Nyrer og urinveier

Kroppen er et delvis lukket system med væske. Vi får hele tiden tilførsel av væske gjennom appetitten som senere forlater oss i form av f.eks. svette og urin. Det er viktig at vi har en stabil væskebalanse i kroppen (riktig sammensetning). Cellene i kroppen må være i balanse med omgivelsene sine. De intracellulære konsentrasjonene må være i balanse med ekstracellulærvæsken. Nyrene filtrerer ~180L plasma i løpet av et døgn. Dette tilsvarer hele plasmavolumet vårt ~60x. Urinproduksjonen er ~ 2L/dag.

Nyrenes viktigste funksjoner

  • Motvirke svingninger i kroppsvæskenes volum og ionekonsentrasjoner
    Viktig for stabilt blodtrykk, blodets pH, nervefunksjon, muskelfunksjon (hjertefunksjon) usw. Dette registreres (plasma og interstitium) av sensorer forskjellige steder i kroppen (bl.a. hypothalamus).
  • Fjerne avfallsstoffer fra kroppen

Nesten alt som filtreres i nyrene reabsorberes i kroppen. Resten går ut som urin gjennom urinveiene (og urinblæren).

Systemet vi ønsker å beskrive består av to nyrer med hver sitt ureter (urinleder) som kobles underfra til urinblæren liggende bak symfysen. Uretra (urinrøret) er en utstikker fra urinblæren som fører urinet ut av kroppen. Urinveiene består av en slimhinne. Utenfor slimhinnen er det et muskellag som driver urinen fremover.

Urinrøret hos en mann er lenger enn hos kvinner og går gjennom prostatakjertelen til penis. Menn vil vanligvis oppleve at prostatakjertelen blir større med alderen. Veksten kan gjøre at prostataen presses opp mot urinlederen og gjøre det vanskeligere å urinere. Vi har en indre lukkemuskel rett ved urinledermunningen og en ytre lukkemuskel lenger nede. Disse er en del av bekkenbunnsmuskulaturen. En kvinnes urinrørsåpning er nærmere endetarmsåpningen. Kvinner er derfor mer sårbare for urinveisinfeksjoner.

Vi har en arterie som går fra aorta til begge nyrene (arteria renalis). Vi har vena renalis som går fra nyrene til vena cana inferior. Arteria renalis går inn og deler seg i arterioler og kapillærer. Det er i kapillærene at blodet filtreres. Etter filtreringen samles blodet igjen og strømmer ut gjennom nyrevenen (vena renalis). Nyrene er bygget opp slik at vi ytterst finner en bindevevshinne vi kaller “nyrekapsel” Under nyrekapselen er det lag med “nyrebark” som er litt lysere. Det neste laget kaller vi “nyremarg” I nyremargen finner vi mørkere strukturer vi kaller “pyramider” Nyrebekkenet er kobler til disse pyramidene og fører urinen til blæren.

Nærmere titt på pyramidene
Det er i pyramidene at selve filtrasjonen av blodet skjer. Arteria renalis danner små kapillærnøster (~ 1 million i hver nye) vi kaller for “glomerulus” Nøstingen gjør at vi får et større overflateareal for filtrasjonen. Glomerulusene ligger tett i tett på hverandre i nyrene. Kapillærene er dekket av flere epitellag vi samlet kaller for “Bowmans kapsel” som omslutter hele glomerulus. Etter filtreringen føres filtratet (preurinen) til et nytt kapillærnettverk (Henles sløyfe). Det er ikke mange andre steder i kroppen vi finner to slike kapillærnøster koblet til hverandre i serie. I filtratet finner vi hovedsakelig små stoffer som ioner, vann, glukose, aminosyrer usw. Store molekyler som proteiner, blodceller klarer ikke å trenge gjennom filteret (glomerulus). Det er altså ikke meningen at vi skal kunne finne blod i urinen. Rekkefølgen er som så: globulus –> proximale tubulus –> henles slynge –> distale tubulus –> samlerør.

Samlet kaller vi rørsystemet, globulus, bowmans kapsel, henles sløyfe usw. for et nefron. Det er nefronet som er bæreren av den typiske nyrefunksjonen. ~20 – 25% av blodet hjertet pumper ut i hvile føres til nyrene (nyrene utgjør ~0.5% av kroppsvekten).

Nærmere titt på glomerulus
Kapillærene deler seg fra en arteriole og danner ringliknende strukturer som sammen ligner på en visp (innførende, afferent, og utførende, efferent). Kapillærveggen består av: ytterst, et epitellag (Bowman’s kapsel), basalmembran, og innerst endotelceller. Plasma i blodet filtreres gjennom tre lag og blir til glomerulusfiltrat (preurin).

Nyrefunksjonen består av tre hovedstadier:

  1. Filtrasjon
  2. Reabsorpsjon
    Gjøres mulig av kapillærer som ligger langs den distale tubulus. Kroppen filtrerer ~180L vann i løpet av et døgn (fordelt på to nyrer) hvorav mesteparten blir reabsorbert. Mekanismene bak reabsorpsjon er:
    – I cellemembran: kanaler og proteiner som frakter stoffer inn og ut av celler.
    – Diffusjon gjennom plasmamembran (lipid)
    – Diffusjon gjennom vannfylte proteinkanaler
    – Transport med transportprotein i membranen som kan skifte form
    O2 og CO2 kan løse seg i fosforlipidene og komme ut på andre siden. Vann fraktes via osmose (forskjeller i saltkonsentrasjoner). Det går gjennom epitelcellene i den distale tubulus (apikalmembranen, cytosol, basolateralmembranen), så gjennom vevsvæske (ekstracellulær væske), og til slutt inn i kapillærlumen gjennom kapillærveggene (endotelceller). Noen stoffer klarer å trenge seg gjennom mellom cellene som en slags snarvei. Det er mindre energikrevende, men ikke alltid mulig (avhengig av hvor tette celleforbindelsene er). Na+ og kalium (som hele tiden lekker ut) fraktes ved hjelp av natrium-kalium-atpase. Kroppen frakter Na+ slik at saltkonsentrasjonen øker den veien vi vil at osmosen skal skje (til kapillærene). Eksempel på legemiddel som kan forstyrre n-k-atpase: digitalis (revebjelle).
  3. Sekresjon
    Kroppens mulighet for å bli kvitt ekstra stoffer den ikke vil beholde.

Det vi får igjen i urinet er: filtrert + sekrert – reabsorbert. ~20% av plasma føres gjennom glomerulus og blir filtrert. <1% blir utskilt som urin.

Forskjell mellom apikalmembran og asolateralmembran:

  • Apikalmembran
    Natrium-glukose-kotransportør (Natrium, glukose inn)
    Natrium-hydrogen-antiportør (Natrium inn, H+ ut)
  • Basolateralmembran
    Natrium-kalium-atpase

I løpet av et døgn reabsorberer vi ~1.5 kg bordsalt i nyrene (og ~200g glukose). Av K+ absorberer vi ~86%. Glukose blir fullstendig reabsorbert. Det er ikke vanlig å finne glukose i urin. Pasienter som lider av ukontrollert diabetes har høy glukosekonsentrasjon i blodet. Da klarer ikke cellene i rørsystemet (nefronene) å reabsorbere all glukosen. Vi har mange natrium-glukose-kotransportørproteiner, men likevel ikke en ubegrenset mengde. Når det er for mye glukose i blodet mettes de. Det er da vi finner glukose i urinen. Om vi spiser for mye godteri på en gang kan det hende vi får observert en (midlertidig) lignende effekt.

Sensorer

  • Forandringer av væsketrykket i plasma registreres i bl.a. hjertet og lungekretsløpet.
  • Osmolariteten (hvor konsentrert blodet er) registreres i hypothalamus.
  • Natrium- og klorkonsentrasjonen registreres i nyrene.

Sensorene aktiverer hormoner og nerver som finregulerer nefronene (hovedsakelig reabsorpsjon og sekresjon) f.eks. ved tørstefølelse.

Væskebalansen i kroppen reguleres hele tiden. Om du plutselig drikker 1L vann vil alt skilles ut igjen (med mindre du var dehydrert fra før). Dette skjer bl.a. fordi hypothalamus registrerer en endring i plasmaens osmolaritet (fordi blodet fortynnes). Hvis du svetter mye og ikke drikker nok vil hypothalamus skille ut hormonet ADH (antidiuretisk hormon). ADH fraktes gjennom sirkulasjonssystemet og binder seg til reseptorer i epitelcellene i tubulus. Da åpnes det vannkanaler i cellemembranene som frakter vann (i større grad) tilbake til blodomløpet (reabsorpsjon). Når vi drikker alkohol tøyser vi med ADH-produksjonen (for lite ADH –> mye urinering).

Spørsmål fra salen:
Blod i urinen kan skyldes mangt og mye. Det vanligste er kanskje urinveisinfeksjon ved at slimhinnene blir irriterte. Også hvis filteret (glomerulus) er ødelagt / skadet pg.a. f.eks. en sykdom.


ForeleserHilde Kanli Galtung

Ressurser
Presentasjon
Opptak

Sirkulasjon

Sirkulasjonsystemets primæroppgaver er:

  • Opptak av oksygen og dets videreførsel til cellene.
  • Transport av næringsstoffer i kroppen.
  • Deponering av CO2 og andre avfallsstoffer.

Vi har to transportmekanismer i kroppen:

  • Konveksjon
    Eks. lungene pumper luft fra atmosfæren inn i kroppen
    Eks. hjertet pumper blodet i kroppen
  • Diffusjon
    Eks. diffusjon av oksygen og karbondioksid i lungene
    Eks. diffusjon mellom blod og andre celler (plasmamembran)

Organene i kroppen er koblet i parallell, ikke serie (dvs. blodet går ikke først til leveren, så nyren usw.).

Hjertet er på overflaten en enkel pumpe, men funksjonelt sett to adskilte. Det er blodtrykket som er kraften som pumper blodet. Aortaklaffen gjør at trykket bevares i aorta. Når trykket i venstre ventrikkel øker og blir større enn i aorta (aortaklaffen), trykkes blodet ut. Sammentrekning av atriet bidrar til det lille ekstra trykket.

Hvordan ser sirkulasjonssystemet ut?
I starten finner vi store, robuste transportrør (når trykket og pumpevolumet er stort). Disse forgrener seg etterhvert til mindre typer, f.eks. kappillærer hvor det skal skje diffusjon. Hastigheten blir større når blodårene trekker seg sammen (stor elv, vann). 

Hvor er blodet?
Det er ~ 5L blod i et menneske. Den største andelen tilbringer tiden sin på vensiden (~54%) (i ro). Bare 70% av blodet er i systemsirkulasjon. Fordelingen endrer seg f.eks. ved grad av fysisk aktivitet. 

Hjertets minuttvolum = hjertefrekvens * slagvolum. Dette kan påvirkes av sympatisk og parasympatisk nervesystem samt sirkulerende substanser (endokrine). Minuttvolum fordelt i hvile: nyrer (mye ift. vekt, fordi de skal rense blodet), fordøyelse, hjerne, skjelett og muskulatur. 

Eksempler:
I hvile: 70/min * 70ml = 4900 ml/min
Hard trening: 200/min * 100ml = 20000 ml/min

I hjertet har vi neksus, gap-forbindelser som gjør at strøm kan gå fra en celle til en annen. Et hjerteslag starter i sinusknuten som befinner seg i øvre del av høyre atrium. Sinusknuten er kroppen naturlige pacemaker som bestemmer hjerterytmen. Normal hjerterytme kalles også normal sinusrytme. Elektriske signaler brer seg gjennom høyre atrium, så venstre og gjør at de kontraherer. Signalene samler seg så i en ny gruppe spesialiserte celler som kalles AV-knuten. Disse forsinker signalet ~1/10s ved endring av ionekanaler for at atriene får tid til å fylle ventriklene med blod. AV-knuten er koblet til “ledninger”, “HIS-bunten”, og går videre (høyre og venstre ledningsbunt) sånn at vi får sammentrekning nede også (altså depolarisering og kontraksjon av ventrikler. Et hjerteslag skjer i rekkefølgen: atrier → Pause → ventrikler). 

Hver celle i hjertet som bidrar til utbredelsen av hjertets elektriske impulser, har to elektriske tilstander: en ladet (polarisert) tilstand og en utladet (depolarisert) tilstand. I den polariserte tilstanden er hjertecellene klare og i stand til å lede den elektriske impulsen som vil føre til et hjerteslag. Etter et hjerteslag er cellene i en utladet fase, før de igjen lades opp og er klare for et nytt hjerteslag. I den utladete fasen (refraktærfasen) er hjertecellene ute av stand til å ta imot og lede en impuls videre i hjertet.

Med elektriske signaler / strøm her, mener vi ioner.

Slagvolum kan også reguleres

  • Indre regulering
    Økt strekk av hjerteceller gir kraftigere kontraksjon. Mer blod inn i hjertet, vil det slå hardere. Hjertet vil alltid pumpe ut den mengden den får.
  • Ytre regulering
    Økt sympatisk aktivering i hjertet: mer Ca2+ pumpes inn i hjerteceller som fører til økt kontraktilitet.

Hjertet og hjernen må ha det blodet de trenger og får det (prioritet), uavhengig av aktivitet. Blodet til magetarm reduseres ved fysisk aktivitet.

Hvordan?
Q = delta P / R (flow, væskeføring)
R = 8Ln / pir^4 (L er rørets lengde, n væskens viskuositet)

Aterioler har nerver / er inerverte som gjør at diameter kan endres. Denne prosessen påvirkes av lokale faktorer. Dersom et område er metabolsk aktivt (mye CO2 og avfall), kan det skje en automatisk regulering som gjør at det føres til mer blod.


ForelesningKåre-Olav Stensløkken

Ressurser
Opptak
Presentasjon