Acidose

Prosedyre ved opptak av pasienter:

  1. Dele pasientgruppen
    Ser pasienten dårlig ut? Viktig å utelukke alle umiddelbart livstruende tilstander og kjøpe tid
  2. Komatøse pasienter under 40 år
    Vanligvis regnet forgiftet til det motsatte er bevist
  3. Komatøse pasienter over 40 år
    Mange årsaksmuligheter

Tungpustenhet (dyspnoe) er noe mange lekfolk tenker at har noe med hjertet og lunger å gjøre: dette er sant! Hvordan kompenserer kroppen ved metabolsk acidose? Jo, nemlig ved å øke ventilasjonen. En blodprøve (blodgass) er tilstrekkelig for å skille mellom metabolske og hjerte-lunge-sykdommer. Ved sepsis er hyperventilasjon et fremtredende symptom.

pH kommer av latin og står for pndus Hydrogenii eller potentia Hydrogenii. Verdiene vises på en logarytmisk skala.

Når vi snakker om metabolsk acidose snakker vi ofte om et aniongap (AG). AG = (Na+ + K+) – (Cl- + HCO3-). En vanlig feilkilde ved testing av acidose er dannelsen av laktat ved romtemperatur. Det er derfor viktig å holde prøven avkjølt.

Under normale forhold vil metabolismen produsere store mengder CO2. Mesteparten går ut som flyktig syre (ut med pusten), ~15 000 mmol i døgnet. Den ikke-flyktige syren må skilles ut med urinen. Ved en nyresvikt vil ikke kroppen klare å deponere de ikke-flyktige syrene, noe som fører til metabolsk acidose. En normalfungerende nyre kan motvirke acidose ved å reabsorbere bikarbonat eller skille ut flere H+-ioner.

Glykolysen blir en anaerob prosess ved sirkulasjonssvikt (for lite oksygen). Da vil hvert glukosemolekyl gi 2 ATP i stedet for ~30-32 ATP. Et biprodukt av den anaerobe prosessen er dannelsen av melkesyre (laktat). Laktacidose er den hyppigste formen for metabolsk acidose.

Årsaker til acidose:

  • Økt produksjon av ikke-flyktige organiske syrer
  • Laktacidose
  • Diabetisk ketoacidose
  • Forgiftning
  • Nedsatt utskilling av ikke-flyktige organiske syrer
    Nyresvikt
  • Diare
  • Overbehandling med NaCl IV (intravenøs)
    Skyldes at for mye klor i saltvannet forskyver syre-base-balansen i blodet
  • Alkoholer
    Mange alkoholer gir svær metabolsk acidose. Etanol gir doping, men ikke andre farlige biprodukter. Etanol har større affinitet til alkoholdehydrogenase enn metanol og fungerer som en konkurrerende inhibitor. Så lenge etanol er til stede blokkeres / sakkes nedbrytningen av andre alkoholer. Ny motgift, fomepizol, inhiberer enzymer direkte og er mer effektivt enn etanolbehandling (også mer praktisk). Terapeutisk konsentrasjon av etanol er nådd ved rundt ~1 promille. Eliminasjonen går tregt (over en uke). Er det praktisk å la en pasient ha ~1 promille i over en uke?

Det er hele tiden balanse mellom an- og kationer i kroppen. Vi har mest av Na+ (kation) og Cl- (anion). Det er et invers forhold mellom klorid og bikarbonat. Mister vi klorid, stiger bikarbonatkonsentrasjonen.

Oksalsyre bindes til kalsium og danner urinkrystaller: kalsiumoksalatkrystaller. Vi kan studere krystallene (enten formet som (baksiden av) konvolutter eller nåler).

Raske spørsmål:

  • Hvor effektiv er en dialysebehandling? Veldig effekti.
  • Hvorfor er det så høy konsentrasjon av metanol når pasienten først er forgiftet? Jo, fordi man tror det er vanlig sprit, men man blir ikke beruset. Da er det naturlig å drikke mer.
  • Hvor lang tid tar det å skille ut metanolen?
    5 halvveringstider. Motgiften er treg fordi metabolismen er blokkert. Dialysen er uavhengig av metabolismen og er derfor en mer effektiv behandling.

Det går ikke an å konkludere med en diagnose bare ved å se på metabolsk acidose (pg.a. så mange muligheter). Bruk sjekkliste. Last ned appen “mymedicalbooks” og finn fram til metodeboken der (gratis).


ForeleserDag Jacobsen

Ressurser
Presentasjon

Syre/base, buffere

En anabolsk reaksjon reduserer og en katabolsk øker energi. Et kovalent bindingsbrudd kan enten være homolytisk eller heterolytisk.

  • Homolytisk
    Elektronene i elektronparbindingen blir likt fordelt mellom atomene (som da blir frie radikaler med uparet elektron).
  • Heterolytisk
    Elektronene i elektronparbindingen blir ulikt fordelt mellom atomene (som da hender at blir ioniserte (anion, kation), spesielt ved tidligere dipoler, altså om det er tilstrekkelig stor forskjell på elektronegativiteten til atomene. Elektronene vil da følge det mest elektronegative atomet).

Hvordan dannes friradikaler?

  1. Initiering
    Cl* angriper stoff
    H, homolytisk bindelsescleavage
    H til Cl* → HCl
  2. Propagering
    AH* nytt radikal
    Angriper Cl2 og får nytt radikal
  3. Terminering
    To radikaler med hverandre

Katabole reaksjoner er oksidative. De oksiderer molekyler og reduserer oksygen. Å splitte et O2-molekyl er farlig for kroppen (som skjer ved mange oksidasjonsreaksjoner i kroppen). O2-molekylet mister et elektron og blir et hyperoksid (O2-*) –> Hyperoksidet mister et elektron og danner hydrogenperoksid (H2O2) –> Hydrogenperoksidet mister et elektron og danner *OH. Jo mer aktiv en mitokondrie er jo flere radikaler dannes det (spise mindre?). Ioniserende stråling fører til dannelsen av frie radikaler i kroppen som (blant annet) kan mutere DNA. Immunceller bruker radikaler for å kjempe mot fremmede agenser (bakterier). Det er derfor kronisk betennelse er alvorlig fordi kroppen da angriper sine egne celler (med radikaler) “unødvendig” Deontologi: som en misinformert strategisk bombing (fortsatt moralsk forsvarlig?). 

Syrer og baser (i vann)

  • Syre
    Spalter av H+ (proton)
  • Base
    Absorberer H+ (proton)

Magesaften (sur: 0.7 – 3) nøytraliseres av bukspytt (basisk: 7.6 – 8) i tynntarmen. Syrer og baser har ikke pH-verdier, men pKA og pKb. Hvis en syre er i en løsning med lavere pKa-verdi vil det ikke avgi H+ (i en løsning med “sterkere syrepotensiale”). En skrythals vil ikke skryte når det er en større skrythals i nærheten. Aspirin (det aktive middelet, acetylsalisylsyre, er en syre) f.eks. vil ikke avgi H+ i magen (pg.a. magesaft med lavere pKa). Den vil derfor kunne diffusere gjennom plasmamembranen til celler fordi den er upolar uten å ha avgitt H+. I cellen er det høyere pKa og aspirinen vil aktiveres, men fordi den avgir H+ i cellen vil den bli polar og dermed miste evnen til å trenge tilbake gjennom plasmamembranen. Det er derfor aspirin har mange bivirkninger. Dette kalles en syrefelle. Denne egenskapen er god for betennelser fordi betent vev er relativt surere (siktemekanisme).

Ved hyperventilering forstyrrer vi kroppens buffersystem fordi vi mister CO2. Da får vi det som heter respiratorisk alkalose (blodet blir mer basisk). Det er derfor det hjelper å puste i en pose. Når vi trener eller anstrenger oss fysisk kjemper kroppen mot alkalosen (blant annet) ved å hyperventilere (+ melkesyre i musklene). Det finnes wagnerseminarer (konserter) hvor folk induserer alkalose sammen. Er det gøy? Kanskje verdt å prøve ut. Foreleser anbefaler det i hvertfall ikke.


ForeleserHesso Farhan