Aminosyrer og proteinstruktur

Proteinstruktur
I mennesker og i naturen er alle aminosyrer i L-form (stereoisomer). Vi skiller aminosyrer alltid ved R-gruppen (sidegruppen). Aminosyrer og proteiner kan virke som buffere rundt deres respektive pKa-verdier. Histadin har en pKa-verdi ~6 (nær nøytral pH). 

Hvor bindes aminosyrene sammen?
I ribosomene. Reaksjonen minker kaoset i systemet (entropien) betydelig. Aminosyrene går fra å flyte fritt i cytosol til å bli satt sammen i en spesifikk sekvens. Vi trenger energi og enzymer for at reaksjonen skal gå.

Enzymer katalyserer andre enzymer er ikke proteiner. Vi har tre enzymer i kroppen som er RNA-enzymer (trolig rester fra tidligere evolusjonær historie).

Peptidbindingen er en resonnerende “1.5”, delvis dobbeltbinding. Dette begrenser bevegeligheten til bindingen (derfor rett). Reaksjonen er en kondensasjonsreaksjon som spalter av et H2O-molekyl.

Naturens prinsipp: maksimering av stabilitet.

Proteiner kan denatureres av bl.a. temperatur, pH, og saltkonsentrasjon. Proteinets egenskaper er avhengig av foldningen. Små dipolkrefter samles i en slags “borrelåseffekt”: Van der Waal, hydrogenbindinger, polare samhandlinger, (disulfidbindinger, kovalente) usw.

  • Primærstruktur
    Aminosyrenes rekkefølge
  • Sekundærstruktur
    Alfaheliks, betaflak
    Hydrogenbindinger inni, hydrogenbindinger mellom
  • Tertiærstrukturen
    Komplekser av sekundærstrukturen
  • Kvartærstrukturen
    Flere polypeptider samler seg og danner multimerte proteiner

Sigdcelleanemi skyldes mutasjon i en aminosyre i hemoglobin (små forskjeller, store virkninger).


Foreleser: Sandip Kanse

Ressurser
Presentasjon

Cellebiologi – introduksjon

En medisinsk nyvinning følger fasene: forskning → diagnostikk → terapi

Ulike typer infeksiøse agenser

  • Bakterier
  • Sopp
  • Protister
  • (Virus)
  • Prioner (proteiner)

DNA-funksjonen

DNA transkriberes til RNA som transleres til proteiner som gjennomgår post-translasjonelle-modifikasjoner.

Cytoskjelettet styrer bevegelser av ting inni cellen vha. proteiner.

DNAet har ~20 000 gener som koder for proteiner, men forholdet er ikke 1:1. På grunn av alternativ spleising kan 20 000 gener i DNA bli til 100 000 typer RNA. Post-translasjonelle modifikasjoner bidrar til enda større variasjon.

Mitokondrie-DNA (~16 000 proteiner) får vi bare fra mor og er veldig viktig for bl.a. nevrologiske sykdommer.

Natrium-kalium-atpase bruker ~1/3 av ATPen vi produserer til enhver tid.

Et eksempel på en post-translasjonell modifikasjon:
Hekte fosfat på aminosyrer: kalles fosforproteiner. Denne reaksjonen katalyseres ved proteinkinaseFosfatgruppen kan endre genekspresjon.

Aminosyrer bindes sammen til proteiner ved hjelp av peptidbindinger. En peptidbinding er en delvis dobbeltbinding uten fri rotasjon. Vi deler aminosyrer etter hvilke sidegrupper de har.

Relevant for histologieksamen
Det er viktig å kunne identifisere ulike typer vev med tilstrekkelig sikkerhet.

  • Epitelvev
  • Binde- og støttevev
  • Muskelvev
  • Nervevev

Ekstracellulær matriks binder cellene våre sammen. 

Kroppen reguleres (på makronivå) i all hovedsak av nerveceller og hormoner.

Lett for leger fordi:
Sykdom skyldes alltid (aldri si alltid tho) av arv eller miljø eller en kombinasjon. Binær kode er lett fordi den bare består av 0 og 1.


ForeleserTore Jahnsen

Ressurser
Presentasjon