Aminosyrer og proteinstruktur

Proteinstruktur
I mennesker og i naturen er alle aminosyrer i L-form (stereoisomer). Vi skiller aminosyrer alltid ved R-gruppen (sidegruppen). Aminosyrer og proteiner kan virke som buffere rundt deres respektive pKa-verdier. Histadin har en pKa-verdi ~6 (nær nøytral pH). 

Hvor bindes aminosyrene sammen?
I ribosomene. Reaksjonen minker kaoset i systemet (entropien) betydelig. Aminosyrene går fra å flyte fritt i cytosol til å bli satt sammen i en spesifikk sekvens. Vi trenger energi og enzymer for at reaksjonen skal gå.

Enzymer katalyserer andre enzymer er ikke proteiner. Vi har tre enzymer i kroppen som er RNA-enzymer (trolig rester fra tidligere evolusjonær historie).

Peptidbindingen er en resonnerende “1.5”, delvis dobbeltbinding. Dette begrenser bevegeligheten til bindingen (derfor rett). Reaksjonen er en kondensasjonsreaksjon som spalter av et H2O-molekyl.

Naturens prinsipp: maksimering av stabilitet.

Proteiner kan denatureres av bl.a. temperatur, pH, og saltkonsentrasjon. Proteinets egenskaper er avhengig av foldningen. Små dipolkrefter samles i en slags “borrelåseffekt”: Van der Waal, hydrogenbindinger, polare samhandlinger, (disulfidbindinger, kovalente) usw.

  • Primærstruktur
    Aminosyrenes rekkefølge
  • Sekundærstruktur
    Alfaheliks, betaflak
    Hydrogenbindinger inni, hydrogenbindinger mellom
  • Tertiærstrukturen
    Komplekser av sekundærstrukturen
  • Kvartærstrukturen
    Flere polypeptider samler seg og danner multimerte proteiner

Sigdcelleanemi skyldes mutasjon i en aminosyre i hemoglobin (små forskjeller, store virkninger).


Foreleser: Sandip Kanse

Ressurser
Presentasjon

Membraner

En kuleform har minst overflate i forhold til volum. Det er derfor vannmolekyler i et fritt miljø naturlig vil orientere seg i dråper (kuler).

Amfipatiske lipider er lipider som både er hydrofobe og hydrofile (såpebobler, cellemembraner).

  • Amphi (gresk): begge slag
  • Pathos (gresk): følelse for noe

I en såpeboble er lipidene orientert slik at de hydrofile hodene vender mot vann og de hydrofobe mot luft.

Vessle.png

Cellemembranen er en dobbeltmembran av amfipatisk lipid.

Artige kulepunkter

  • Alifatiske lipider har kjeder av karbon, vanligvis ikke forgrenede
  • Lipider finnes som både mettet og umettet
    Umettede lipider har dobbeltbindinger
  • Lipider finnes som essensielle og ikke-essensielle
    Kroppen kan produsere ikke-essensielle lipider selv
  • Nomenklaturen er basert på IUPAC
    Både systematiske og trivialnavn
  • C:D
    C = antall karbonatomer
    D = antall dobbeltbindinger
  • Omega (ω) – x hvor x er posisjonen til dobbeltbindingen talt fra  ω-karbonatomet (siste)
    F.eks. for omega-3 ligger dobbeltbindingen mellom 3. og 4. karbonatom fra omegakarbonet
  • Vi har cis- og transumettede fettsyrer
    Orientering ved dobbeltbinding
  • α(alfa)-karbonet er nr. 2 og β(beta)-karbonet er nr. 3
    Talt fra funksjonell gruppe
    ω(omega)-karbonet er siste karbonatom

Dobbeltbindinger forekommer ofte regelmessig (f.eks. annenhver binding).

Amfipatiske lipider i vann vil selv organisere seg til en dobbeltmembran og lukke seg fordi det er en energetisk gunstig konfigurasjon. Det er ugunstig å ha hydrofobe ender vendt mot vann.

Strukturen kan være: alkohol (kolin), fosfat, glyserol, og fettsyrer (med knekk dersom det er en cis-dobbeltbinding). Ladningene på fettsyrene kan ha noe å si, men de pleier å være nøytrale.

Phospho.gif

Fosfolipider er mobile. De er ikke som margarin eller oljer, men en mellomting. Fluiditeten til cellemembranen avhenger av sammensetningen (temperatur, fettsyrenes halelengde, dobbeltbindinger (flere jo mykere, lavere smeltepunkt), mengde kolesterol (lettere å flipfloppe, gjør membranen stivere pg.a. en stiv ringstruktur) usw.). Kolesterol i beskjedne konsentrasjoner reduserer fluiditeten, men øker i høy (hos røde blodceller består membranen av nesten ~1/4 kolesterol). Membranen blir stivere jo lengre unna sentrum du kommer (men hvor er sentrum?). Tiltrekningen mellom lipidhalene øker med lengden da de induserte londonkreftene blir sterkere. Dipolkraften avtar med d^6 (d = distance). (Enkelte) Bakterier kan justere fettsyresammensetningen i membranene deres med et ytre miljø (bedre tilpasning).

Cellemembranen har god lateral (sidelengs) mobilitet. Lipidene kan flyte sidelengs som en “todimensjonal væske” En “flip” hos lipidene kan skje (at de bytter plass), men veldig sjeldent da det polare hodet da må passere gjennom det hydrofobe indre partiet.

På membranen finner vi (blant annet) mange vannporer (akvaporiner). Vi trenger dem fordi osmose som eneste transportmekanisme hadde vært for treg. Den nøyaktige sammensetningen av lipidmembranen er ukjent (f.eks. hos gliaceller). Har vi mye kolesterol blir hjernen mindre permiabel for vann.

De to lagene i dobbeltmembranen har ulik sammensetning (pg.a. enzymer, flippaser). Membraner dannes i endoplasmatisk retikulum. Glykolipider finnes bare i det ytre laget og er viktig for å beskytte cellen mot uvennlige ytre omgivelser (lav pH, nedbrytningsenzymer usw.). Adhesjon mellom celler er også avhengig av glykolipider. I det innerste laget (vendt mot cytosol) finner vi typisk negativt ladde ioner. De fleste glykolipider er basert på sfingosin (samme som sfingomyelin). Gangliosid er en overflatereseptor for bakterietoksinet som forårsaker diare ved kolera. Nedbryting av fosfolipider kan være viktig for å overføre signaler fra det ekstracellulære miljøet til cellens lumen (intracellulært).


ForeleserErlend Arnulf Nagelhus

Ressurser
Presentasjon

Karbohydrater og lipider

Skiller mellom karbohydrater

  1. Antall C
  2. Type karbonylgruppe
  3. Isomerer, epimerer: forskjell rundt ett c-atom, enantiomerer: speilbilde
  4. Et, to, flere monomerer

Syklisering
Når monosakkarider danner syklus, reagerer hydroksylgruppen i den ene enden med aldehydgruppen i andre. Disse sykliske molekylene kommer i alfa- eller betaform (anomerer) avhengig av posisjonen til hydroksylgruppen (over eller under). Noe tilsvarende skjer for ketoser.

Reduserende sukker
Dette kommer av karbonylgrupper.

Modifiserte karbohydrater (gjerne heksoser)
Eksempler:

Hvordan lenkes karbohydrater sammen?
Reaksjonene (glykosidbinding) som skjer katalyseres av enzymer (glykosyltransferaser). 

  • To monosakkarider
    Disakkarid
  • 3-10 monosakkarider
    Oligosakkarid
  • >10 monosakkarider
    Polysakkarid

Homopolymerer: samme monosakkarider
Heteropolymerer: ikke samme monosakkarider (viktig for ekstracellulær matriks)

Karbohydrater kan kobles med ikke-karbohydrater og reagere med andre typer molekyler som puriner og pyrimidiner i DNA.

  • Aromatiske ringer
    Steroider, bilirubin
  • Proteiner
    Glykoproteiner, GAG
  • Lipider
    Glykolipider

Fettmolekyler er hydrokarboner med (ofte) lange hydrofobe kjeder og hydrofile hoder med karboksylgrupper (lengde mellom 2-40, i celler ~14-24). 

Umettede fettsyrer
Disse kan være CIS og TRANS på grunn av de(n) rigide dobbeltbindingene. En trans-umettet fettsyre har nesten samme struktur som en mettet en i at den er linjær. CIS-umettede fettsyrer er ikke linjære og tar derfor mer plass. Denne egenskapen er viktig for f.eks. cellemembraner (e.g. fosfolipider) (mer rom til bevegelse: hvordan få linjære molekyler til å danne en sirkulær membran?). 

I cellemembranen finner vi to typer fosfolipider:

Den generelle strukturen til fosfolipider er:

  • Hydrofilt hode
    Fosfat, alkohol, støtte
  • Hydrofobisk del
    Hydrokarbonkjede

Altså, amfipatiske. Typen fosfolipid avhenger av støttegruppen (glyserol eller sfingosin).


ForeleserThomas Michel Kuntziger

Ressurser
Presentasjon
Opptak