LSB: smågruppe uke 11

  1. Forklar hvorfor cellemembraner utgjør en diffusjonsbarriere for enkelte typer molekyler men ikke andre.
    Fordi cellemembranen består av et dobbelt lipidlag og er lite gjennomtrengelig for b.la. polare molekyler. Det er derfor membranen trenger porer og kanaler for ioner, vann, store makromolekyler usw. 
  2. Gi eksempler på hvilke transportmekanismer som kan regulere cellens pH. Til kasuistikken:
    – Na+/H+ antiportør
    – Na+HCO3-/Cl- antiportør
    – Cl-/HCO3- antiportør
    Antiporters.jpg
  3. Hvilke konsekvenser ville det ha dersom de tilførte væskene hadde annen osmolalitet enn den fysiologiske?
    Væsken hadde forstyrret det osmotiske trykket (høyere osmolalitet: lekke ut, lavere osmolalitet: lekke inn).
  4. Hva er hensikten med å gi albumin?
    Albumin gjør at væsken holdes inne i blodårene. Det er viktig å opprettholde kroppens osmotiske trykk sånn at plasma ikke diffunderer inn i kroppen. Hvorfor vente til dag to? På dag en er porene i blodåremembranene så store at alt som renner inn i kroppen kommer til å renne ut igjen. Da er det først og fremst viktig å erstatte tapt natrium og holde pasienten hydrert. Det osmotiske trykket består ikke bare av ioner, men også proteiner usw. 

Oppbygning av cellens membraner

  • Dobbelt fosfolipidlag (e.g. glycolipider, sfingolipider)
  • Proteiner
  • Porer
    E.g. akvaporiner
  • Kanaler
  • Kolesterol
    Kolesterol gjør at lipidmembranen blir mer rigid og dermed elastisk; elastiske materialer er et stadie mellom de flytende og faste
  • Lipid drafts
    Områder med mye kolesterol og er viktig for å bl.a. regulere bevegelsen av membranproteiner
  • Glykolipidlag
    Utenpå cellemembranen. Beskytter mot farlige endringer i pH. Viktig også for cellesignalisering

Transportprosesser for ulike molekyler over cellemembranen
Passive mekanismer

  • Diffusjon
  • Fasilitert diffusjon (ved bærermolekyler)
    Med konsentrasjonsgradient

Aktive mekanismer

  • Primærtransport
    Virker mot konsentrasjonsgradienten
  • Sekundærtransport
    Symport: molekyler utnytter en åpning som allerede eksisterer (mindre resistanse)
    Antiport: et molekyl beveger seg med konsentrasjonsgradienten (passivt), mens et annet bruker åpningen til å bevege seg mot den

Endo(inn)cytose og ekso(ut)cytose

Årsakene til at det er en skjevfordeling av ioner over cellemembranen
Ujevn fordeling av lekkende ionekanaler. Lipidmembranen er en god isolator. Ioner trenger derfor kanaler eller transportører for å komme seg gjennom.

Osmotiske krefter og cellens volumkontroll
Akvaporiner er med på å regulere vanninnholdet i en celle. Eksperiment: et froskeegg som er genmanipulert til å ha flere akvaporiner i cellemembranen vil svelle unormalt mye i vann.

Cellers pH-regulering og bufferkapasitet
To måter (Avhengig / Uavhengig av Na+)

  • H+ ut
    Na+/H+-antiportør. Na+ pumpes inn og H+ ut.
  • Bikarbonat (base) inn
    Cl- ut. NaHCO3 inn. Na+ frigjøres. HCO3- binder seg til H+ i lumen og danner H2CO3 (karbonsyre) som igjen kan reagere videre til H2O og CO2.

Uavhengig av Na+
Antiport: Cl- inn og HCO3- ut (for å utjevne alkalinitet).
H+ produseres i cellen hele tiden. HCO3 tar opp H+. Når bikarbonatkonsentrasjonen faller, begynner H+ å binde seg hyppigere med OH-.

Lysosomer
H+ kan pumpes inn i lysosomer ved primærtransport (energikrevende, ATP). pH i et lysosom er ~5. I cytosol er pH ~7.2.

Faktorer som bestemmer transporthastigheten av molekyler over korte avstander, samt de vanligste transportveier gjennom membranen

  • Avstand
  • Brownske bevegelser
  • Affinitet
  • Størrelse
  • Stoffkonsentrasjoner
  • Membranens overflate

Usw.

Syre/base, buffere og eksempler på pH-forstyrrelser (acidose)
Ved nyresvikt vil syreholdig urea usw. bli værende i kroppen. Laktat, H+-nivået går opp o glikevekten forskyves. pH i blodet øker. Den naturlige reaksjonen er å hyperventilere, men det er ikke nok i seg selv.


Foreleser: Laura Trachsel Moncho

Oppgaver
Ressurser

Vanntransport, osmose, cellevolum

Cellemembranen består av porer og kanaler (glidende overgang)

  • Porer
    Noen er alltid åpne
    Brede nok til å slippe inn makromolekyler (f.eks. akvaporin, mitokondrisk pore usw.)
  • Kanaler
    Kan reguleres ved stimulus eller åpen hele tiden (lekkasjekanal)
    Brede nok bare for ioner (smale)

Kanaler hver som seg er selektive for f.eks. Na+, Cl-, K+, Ca2+, dvs. deltaker kun i sine egne prosesser. De diskriminerer på størrelse og polaritet. Vann klinger seg til ioners overflate og øker totalstørrelsen (fører også vann inn gjennom ionekanaler).

Hva menes med stimulus?

  1. Elektrisk spenning
  2. Signalmolekyl
  3. Strekk i cellemembran

Aktiveringen er binær, altså ikke gradert (enten aktiv eller ikke), og forbigående, dvs. selvavsluttende.

Eksempel:
Slangegift lammer ofrene sine ved å regulere acetylkolinreseptorer (Na+ og K+ | viktig for nervesystemets funksjon).

Gap junctions: åpne celleforbindelser  (direkte kobling). Permeable for organiske molekyler. Viktig for b.la. at molekyler og ioner skal kunne passere direkte til neste celle uten å gå via ekstracellulærmediet. 

Vi har 13 typer akvaporiner som er forskjellige fra celle til celle (isoformer). De kan slippe gjennom opp til ~ 3*10^9 (3 milliarder) H2O-molekyler i sekundet. Utsiden av poren er hydrofob og innsiden hydrofil.

Vann har tre måter å slippe gjennom plasmamembranen:

  • Akvaporiner
  • Vannfylte ionekanaler (ved hydrasjonsskall, taxi / Uber)
  • Mellom fosfolipidene
    Meget langsomt

Transport ved bærerproteiner

  • Fasilitert diffusjon
    En passiv prosess
  • Primær og sekundær aktiv transport
    Primær: bruker ATP (f.eks. Na+-K+-ATPase)
    Sekundær: bruker elektrokjemisk gradient, kotransportører, utvekslere (f.eks. Na+-Ca2+-utveksler)

Glukosetransportører følger konsentrasjonsgradienten. I andre organer finnes det andre transportører enn for bare glukose siden hjerne og hjerte prioriteres ved f.eks. faste (mangel). Da må de andre organene kunne sustinere seg på andre energikilder.

Aktiv transport går mot konsentrasjonsgradienten (eller elektrokjemisk gradient) og er derfor en energikrevende prosess.

Høyere affinitet => lettere binding => raskere diffundering. Transportører kan mettes.

Kotransportører (symport): to stoffer i samme retning
Utvekslere (antiport): to stoffer i motsatt retning

Hvordan klarer cellen å øke overflaten ved volumøkning?

  • Folde ut overflatestrukturer
  • Endre fasong (mer som kule)
  • Spleise endomembraner (ved eksocytose)
  • Strekking av lipidlaget (~3%)

ForeleserLinda Hildegard Bergersen

Ressurser
Presentasjon

Karbohydrater og lipider

Skiller mellom karbohydrater

  1. Antall C
  2. Type karbonylgruppe
  3. Isomerer, epimerer: forskjell rundt ett c-atom, enantiomerer: speilbilde
  4. Et, to, flere monomerer

Syklisering
Når monosakkarider danner syklus, reagerer hydroksylgruppen i den ene enden med aldehydgruppen i andre. Disse sykliske molekylene kommer i alfa- eller betaform (anomerer) avhengig av posisjonen til hydroksylgruppen (over eller under). Noe tilsvarende skjer for ketoser.

Reduserende sukker
Dette kommer av karbonylgrupper.

Modifiserte karbohydrater (gjerne heksoser)
Eksempler:

Hvordan lenkes karbohydrater sammen?
Reaksjonene (glykosidbinding) som skjer katalyseres av enzymer (glykosyltransferaser). 

  • To monosakkarider
    Disakkarid
  • 3-10 monosakkarider
    Oligosakkarid
  • >10 monosakkarider
    Polysakkarid

Homopolymerer: samme monosakkarider
Heteropolymerer: ikke samme monosakkarider (viktig for ekstracellulær matriks)

Karbohydrater kan kobles med ikke-karbohydrater og reagere med andre typer molekyler som puriner og pyrimidiner i DNA.

  • Aromatiske ringer
    Steroider, bilirubin
  • Proteiner
    Glykoproteiner, GAG
  • Lipider
    Glykolipider

Fettmolekyler er hydrokarboner med (ofte) lange hydrofobe kjeder og hydrofile hoder med karboksylgrupper (lengde mellom 2-40, i celler ~14-24). 

Umettede fettsyrer
Disse kan være CIS og TRANS på grunn av de(n) rigide dobbeltbindingene. En trans-umettet fettsyre har nesten samme struktur som en mettet en i at den er linjær. CIS-umettede fettsyrer er ikke linjære og tar derfor mer plass. Denne egenskapen er viktig for f.eks. cellemembraner (e.g. fosfolipider) (mer rom til bevegelse: hvordan få linjære molekyler til å danne en sirkulær membran?). 

I cellemembranen finner vi to typer fosfolipider:

Den generelle strukturen til fosfolipider er:

  • Hydrofilt hode
    Fosfat, alkohol, støtte
  • Hydrofobisk del
    Hydrokarbonkjede

Altså, amfipatiske. Typen fosfolipid avhenger av støttegruppen (glyserol eller sfingosin).


ForeleserThomas Michel Kuntziger

Ressurser
Presentasjon
Opptak

Det endokrine system

Alt i kroppen er styrt av hormoner og nerveceller. Navn på hormonene er ikke viktig før modul 2.

Etymologi

  • Endo (inne)
  • Krino (utløse / frigjøre)
  • Logi (lære om)

Viktig å se på forskjell mellom eksokrin og endokrin. Pavlov var nevromaksimalist og mente bastant at alt var styrt av nerveceller. Signaler fra nerveceller kan ikke være langvarige, men det kan de fra hormoner. Secretin var det første hormonet som ble oppdaget. 

Alle reaksjoner som skjer lokalt som adrenalin, vasokonstriksjon kommer av nevroner i form av nevrotransmittere. Hormoner er stoff som frigjøres i blodet og virker på noe ikke-lokalt.

Dersom et hormon fra hypofysen skal til bukspyttkjertelen vet det ikke selv hvor målet er (en dum turist). Hormonet drar overalt, men det er bare i bukspyttkjertelen den finner de(n) riktige reseptoren(e). Endokrine celler produserer signalmolekyler som binder seg til spesifikke reseptorer i målcellene og gir en reaksjon. Ingen av hormonene fra hypofysen er fettløselige fordi ellers kunne de gått gjennom cellemembranene til alle typer celler og forårsaket diverse komplikasjoner. Det finnes fettløselige hormoner i kroppen, men disse er ofte uansett ment til å virke overalt (e.g. testosteron). 

Vi har to typer reseptorer:

  • Intracellulære
    Bindes bare til fettløselige hormoner fordi bare de kommer inn i cellen
  • Reseptorer på plasmamembranen
    Bindes til de vannløselige hormonene

Tre eksempler på endokrine kjertler:

  • Hypofysen
    Hypofysen er ikke beskyttet av hodeskallen. Den består av to deler, en anterior (forlapp) og posterior (baklapp).
    Forlapp
    Hormonkjertel som bl.a. produserer veksthormonet i kroppen. Disse binder seg til reseptorer i leveren og stimulerer en produksjon av vekstfaktor.
    Baklapp
    Hormoner fra hypothalamus transporteres til baklappen hvor de skilles ut. Den produserer ikke selv hormoner og kalles også for nevrohypofysen.
  • Skjoldbruskkjertelen
  • Eggstokken

Hormoner reguleres av nesten alt, f.eks.

  • Lys
  • Sukker
  • Stress (kortisol)
  • Søvn
  • Ioner
  • Andre hormoner

Vitamin D er ikke et vitamin, men et hormon (misnomer). Vitamin er et stoff vi ikke kan syntetisere selv. I mus er f.eks. vitamin C ikke et vitamin. 


ForeleserHesso Farhan

Ressurser
Presentasjon

Celler og vev I

Hvorfor har celler egne organeller?
Fordi mange av prosessene vi er avhengige av er 1) tilstrekkelig avanserte og 2) tilstrekkelig volatile (frie radikaler) til at det er nødvendig.

Noen prokariote celler (e.g. bakterier) klarer seg bra uten f.eks. nukleus, men de er samtidig også en del enklere. Prokarios kommer av gresk og betyr “før kjernen”

Blant cellens organeller finner vi

  • Mitokondrie
    Lager ATP
  • Lysosomer
    Cellens søppelkvern. Bryter ned organeller og annet. De har enzymer som katalyserer hydrolyse av organiske molekyler, dvs. de bruker vann for å spalte to molekyler (“motsatte” av kondensasjonsreaksjon).
  • ER (endoplasmatisk retikulum)
    “Ansvarlig” for transport av proteiner i cellen (f.eks. markerer proteiner som skal pakkes i vesikler usw.).
  • Golgiapparatet
    “Ansvarlig” for å modifisere makromolekyler som proteiner.

Hvordan holder vi celler fra hverandre?
Organellene har cellemembraner laget av lipider (e.g. fosforlipid) som ikke er lett vannløselige. Cytosolen, væsken i cellen, består for det meste av vann og salter, og trenger derfor ikke lett gjennom membranene. Cell membrane
Yttersidene av membranen er hydrofil, mens midten er hydrofob. Dette er fordi membranen for det meste består av fosfoglyserider med en lang hydrofob hale i den ene enden og hydrofile fosfatgrupper i den andre. 

Hvordan kommer proteiner gjennom cellemembranen?
I cellen har vi vesikler som i grunn er cellemembraner. Proteinet snører seg inn i vesiklen som kan smelte sammen med cellemembraner og føre proteiner ut og inn. Denne prosessen kalles eksocytose. I tillegg til vesiklene finnes det spesialiserte kanaler i membranene for ioner. F.eks. finnes det egne kanaler for kalium, kalsium, natrium osv. Cellen kan selv balansere gradienten. Transportørproteiner kan i tillegg flytte ioner mot konsentrasjonsgradienten (tenk ATP-syntese, H+ gradient). Vi har også mange proteiner som sitter fast i membranen (en viktig del av struktur og funksjon). 

I presentasjonen ser vi tre bilder med forskjellige celler:

  • Beinmargceller
    Har i utgangspunktet ikke cellekjerne, men har hatt det. Vi ser på bildet at cellene har ulik form på cellekjernen, noe som forteller oss om tilstandene i lokalmiljøet.
  • Oocytt, eggcelle
    Oocytten er den store cellen i midten. Eggcellen er mye større enn de små støttecellene med røde cellekjerner rundt.
  • Magesekkceller
    De produserer saltsyre sånn at vi får veldig lav pH i magen sånn at vi kan drepe bakterier og sånn at vi kan bryte ned mat og sånn.

Cellene er forskjellige fordi de uttrykker forskjellige gener. Hva er det som gjør at visse gener skrus av og på (genregulering)? Det skal vi lære om senere.

Kondensert og ekstendert kromatin danner prikker som vi av og til ser i cellekjernen. Vi ser og i noen celler en nukleolus, liten kjerne, som handler om hvordan cellen bygger opp ribosomer. En høy grad av proteinsyntese har tydelig grad av nukleolus.

Lysmikroskopet har en begrensning på rundt 200 nm. For å se flere detaljer må vi bruke et elektronmikroskop. De minste cellene er rundt 10 mikrometre.

Analyse av et bilde i presentasjonen
I midten har vi cellekjernen. Vi ser flekker som tyder på kondensert og ekstendert kromatin. Det er ingen tydelig nukleolus som kan tyde på liten grad av proteinsyntese. De små mørke prikkene kan være vesikler som lagrer proteiner og andre molekyler (f.eks. adrenalin). Vi kan se mitokondrier, men de er ikke så tydelige. De lange, brede, flate strukturene er ER og ser ut som en fjellside hvor bønder planter te. 

Endocytose er opptak av stoffer inn i cellen. Cellen kan flytte på plasmamembranen og på denne måten svelge bakterier. Lysosomene i cellen begynner da å bryte dem ned.

Fagocyterende celle
Makrofagen er viktig i fagocytosen. Navnet kommer av gresk og betyr storspiser. De har “hvite” hulrom inni seg hvor det de har svelget ender opp. I bildet ser vi en bakterie som har blitt omsluttet av plasmamembranen. Det kommer et fagosom og lysosom som bryter det ned. Cellekjernen i bildet er delt fordi vi har skåret gjennom cellen for å ta det.


ForeleserErik Dissen

Ressurser
Temaside