Medikalisering og overbehandling

Hovedsakelig det samme som i presentasjonen.

Sykdom er ikke noe som er umiddelbar i tid. Det vil si at en sykdom kan ligge i fremtiden i form av prognoser. Medisin beskriver egentlig årsaken som forårsaker sykdom men som ikke i seg selv er sykdom.

Blodtrykksmedisin – behandler vi sykdom eller risiko for sykdom?

Ulike tolkninger av sykdom:

  • Som biostatistisk norm
    Hvordan tilstanden er for den gjennomsnittlige. Sykdom defineres da som avvik fra “normen” (Men) Mennesker har variasjoner, altså indre avvik som ikke nødvendigvis er sykdom. Vi vet altså ikke helt hva “helse” er.
  • Helse som ideal
    Evnen til å oppnå våre mål og leve som vi ønsker. Når livet er bra går kroppen “stille”

I dag er medisin blitt mye mer pasientsentrert. Det er pasientens egen opplevelse av diagnosen som ofte innskrenker behandlingen. Hva er sykdom? Svaret avhenger altså av pasienten. For pasienten har opplevelsen av en sykdom holdt seg relativt statisk (lungebetennelse “føles” likt som for 100 år siden). For legen har lungebetennelse som diagnose imidlertid gjennomgått store endringer. Det er samfunnet som bestemmer hvem som er syk og hva sykdom skal være.

Medikalisering
Hva ligger i begrepet?

  1. Bruke medisinsk språk for å beskrive et problem
  2. Behandle noe med medisinske inngrep

Ikke hvem som helst kan kalle seg en lege. Legekompetansen er høy og godt beskyttet. Hvor mye makt har en lege? Det er ikke gitt at en lege skal bestemme om en skal få uføretrygd eller ikke. 

Hvorfor medikalisering?
Medikalisering kan være fullstendig eller begrenset. Med begrenset medikalisering menes da at et medisinsk inngrep bare er et av mange alternative behandlinger. 

Hvem driver med medikalisering?
Illich kritiserte at legene på hans tid hadde fått for mye makt. Det er ikke bare leger som fremdriver medikaliseringen av samfunnet, men også industri og pasienter. Folk ønsker å bli behandlet medisinsk. Er medikalisering et onde?

Overdiagnostisering
I dag er det for mye medisin som er for lett tilgjengelig og lite regulert. Det hender stadig at p
asienter behandles for noe som ikke trengs å behandles. Pasienten får ingen gevinst av behandlingen. Legens oppgave er ikke å behandle pasienten, men ta vare på dem. “Er det i pasientens beste interesser å behandle dette?”

Hvorfor skjer det?

  • Terskelen for å behandle har blitt lavere
    Det er så lett å behandle.
  • Feildiagnostisering
    Det har skjedd utvidelser av sykdomsdefinisjoner som ikke alltid gjenspeiler virkeligheten (f.eks. hva “høyt” blodtrykk er). For mange er det så lettvint å behandle at mange bare gjør det for “sikkerhetens skyld” Legen kan også føle seg tryggere mtp. pasientklager usw. om de ikke gjør det. Overdiagnostiseringen fører til merkelapper som i seg selv kan føre til lidelser som sykdomsangst. Pasienten blir skremt av legen og blir syk av å få merkelapp på seg.

§1 i legenes etiske reglement:
“En lege skal verne menneskets helse. Legen skal helbrede, lindre og trøste. Legen skal hjelpe syke til å gjenvinne sin helse og friske til å bevare den.”

Til fredag: gruppeoppgave

Viktig
Biomedisinsk nivå: Disease
Individnivå: Illness
Samfunnsnivå: Sickness


ForeleserChristoph Gradmann

Ressurser
Presentasjon
Utdrag
Oppgaver

Normalfordelingen

Vi er hovedsakelig interessert i to typer variasjoner i målinger:

  • Variasjon mellom individer
  • Variasjon innen individer
    Hvilken variasjon ser vi om vi gjør samme måling gjentatte ganger på samme individ?

Variasjon innen individ er typisk mindre enn mellom.

Vi finner en tabell over verdier i en standard normalfordeling bl.a. bakerst i boken til Aalen. Tabellen gir svar på hvor mange prosent av verdiene i datamengden er mindre eller lik en tenkt verdi Z. I praksis spiller det ingen rolle om vi bruker ekte større eller mindre (<, >), da sannsynligheten for at målingene samsvarer eksakt er null når vi senere har med kontinuerlige skalaer å gjøre. Når vi skal finne svar for verdier som er større enn (eller lik) Z, bruker vi komplementsetningen 1-P. For negative verdier kan vi bruke at siden P(Z <= -X) er det samme som P(Z >= X), får vi 1 – P(Z<=X).  

Når vi analyserer data er det typisk å konstruere normalområder som definerer hva som skal være normalverdiene. Utenfor normalområdene tenker vi på verdiene som unormalt høye eller lave. Ved standarde normalfordelinger setter vi som oftest normalområdene til gjennomsnittet +- 1.96 SD (standardavvik). Da ligger 2.5% av fordelingen utenfor på “hver side” og de normale verdiene innenfor de resterende 95%.sd1.PNGsd 2.PNG

Vi noterer en normalfordeling på denne måten:  X ~ N(µ, σ), som leses “X er en normalfordelt variabel med forventning (gjennomsnitt) µ og standardavvik (spredning) σ.” I en standard normalfordeling er µ = 0 og σ = 1, altså N(0, 1). Når vi regner, er det vanlig å gjøre om frekvensfordelingen til en standard normalfordeling. Da bruker vi Z-verdier, som regnes ut på formen Z = (X − µ) / σ. Z er da X i den tenkte normalfordelingen.

Hvorfor er normalfordelingen nyttig?

  1. Mange fenomener er ~normalfordelte
  2. En sum av mange uavhengige størrelser der ingen dominerer er tilnærmet normalfordelt
    Sentralgrensesetningen

Å regne ut en binomisk sannsynlighetsfordeling kan bli tungt om det blir for mange forsøk, selv med datamaskin. Derfor er det vanlig å bruke normalfordeling som en tilnærming den binomiske. Ved tilnærmingen bruker vi at µ = n*p og σ = np(1-p). Helt generelt, funker tilnærmingen best når np >= 5 og n(1-p) >= 5. 

Normalfordeling av gjennomsnittsverdiene
Med gjennomsnittsverdiene mener vi da gjennomsnittene til verdiene i tenkte utvalg av en gitt populasjon. Et eksempel kan være at vi plukker ut grupper på 1000 personer og ber dem rangere “Ex on the Beach” fra 1-10. Vi tar så gjennomsnittsrangeringene i de ulike gruppene og normalfordeler dem. Konfidensintervallet handler om hvorvidt den “sanne verdien” for hele populasjonen er med i fordelingen. Med “hele populasjonen”, mener vi da f.eks. alle personer som har sett “Ex on the Beach” Det finnes jo et “sant gjennomsnitt” dersom vi hadde spurt absolutt alle og regnet på det. Poenget er at vi ikke har gjort det, men at det likevel er sannsynlig at den “sanne verdien” ligger blant de ulike gjennomsnittsverdiene. Når vi snakker om SE i forbindelse med en gjennomsnittsfordeling er det i grunn det samme som standardavviket deres (hvis alltid er mindre enn i den opprinnelige datamengden). Forventningen er da µ og standardfeilen σ / sqrt(n). Formelen blir da Z = (X − µ) / (σ / sqrt(n)), gitt at vi kjenner σ til populasjonen. Jo større utvalg når vi regner ut gjennomsnittsverdiene, jo mindre variasjon blir det.


ForeleserMagne Thoresen

Ressurser
Pres

KURS: PC-øvelser

  1. Les oppgavebeskrivelsen her: oppgaver-uke-34.pdf
  2. Last ned programmet SPSS her
  3. Finn datafilene (og annen informasjon) hervo2.sav og vo2hr.sav
  4. Eventuelt titte på instruksjonshåndboken her

Oppgave 1 (kopiert rett fra oppgavefilen)
Vi skal introdusere et datamateriale, som også stammer fra University of Massachusetts. Det er til sammen data fra 233 menn (individ 139 mangler) som deltok i en undersøkelse av fysisk form og oksygenopptak under arbeid. En del av undersøkelsen ble foretatt på tredemølle hvor O2-opptak og blodtrykk ble målt.

De viktige variablene er maksimalt O2- opptak på tredemøllen (VO2, målt i ml/kg/min) og
Aerob svekkelse (FAI, målt i prosent relativt til alder og kjønn). VO2 er maksimum antall
milliliter av oksygen opptatt i løpet av 1 minutt, per kg kroppsvekt.

På nettet finnes det en rekke enkle kalkulatorer på av maksimalt O2- opptak – uten å løpe på tredemølle, se for eksempel https://www.ntnu.no/cerg/vo2max.

Det er ingen Missing values på datafilen

Løsning oppgave 1
3. Lag en deskriptiv analyse av VO2. Gjør dette via Analyze/Descriptive Statistics/Explore. 
Trinn 1Trinn 2Trinn 3Trinn 4Trinn 5Trinn 6Trinn 6.5
Forklar hva gjennomsnittene, medianene, standardavvikene og standardfeilen til gjennomsnittet (Std. Error) uttrykker. Forklar boksplottene.

  • Gjennomsnittet
    Sum av observasjoner / antall observasjoner.
  • Medianen
    Like mange observasjoner over som under medianobservasjonen. Om antall observasjoner er et partall, blir medianverdien vanligvis et gjennomsnitt av de to midterste verdiene.
  • Standardavviket
    Verdienes gjennomsnittsavstand fra gjennomsnittsverdien
  • Standardfeilen
    Standardavviket / kvadratroten av antall observasjoner. Hva ligger bak formelen? La oss si at det snart er stortingsvalg. Avisene tar en meningsmåling (typisk grupper på 1000) som viser at 23% stemmer på Høyre. I en annen måling med en annen gruppe mennesker får vi kanskje 26%. Jo flere målinger vi tar av grupper på 1000, jo nærmere kommer vi populasjonsverdien (altså den egentlige prosentverdien for hele befolkningen). Standardavviket til alle disse “småverdiene” kaller vi da for standardfeilen, altså graden av usikkerhet i meningsmålingene.
  • Interkvartil avstand
    Deler målingene i fire grupper. Når første 25% av målingene er bak oss kaller vi det for første kvartil. Like så kalles 50% for andre kvartil (eller medianen) og 75% for tredje kvartil. Avstanden mellom første og tredje kvartil kaller vi den interkvartile avstanden. I praksis har vi da med 50% av målingene.

box w coms.PNG
Figuren ovenfor kaller vi et boksplott og er en grafisk fremstilling av noen utvalgte deskriptive verdier.

HistogramAdd histro
Histogramgraph.PNG
Jo flere observasjoner, jo nærmere kommer vi en kurve (og en sannsynlighetsfordeling). Den mest brukte sannsynlighetsfordelingen er en normalfordeling som er symmetrisk rundt gjennomsnittet. Det er ofte interessant å se på hvordan målinger samsvarer med en normalfordeling. Dette kan vi sjekke ved:
Trinn 1Trinn 2Normal plots
Normality plot 1Normality plot 2
Jo nærmere verdiene er normalfordelte, jo mer samsvarer de med grafene (hvor stor andel som ligger innen normalfordelingen). I praksis vil vi aldri se reelle data som ligger eksakt på normalfordeligen. Foreleser forteller at han selv aldri har klart å tolke den horisontale grafen langs x. Da er det vel trygt å anta at dette heller ikke er pensum (med mindre det er ekstreme avvik eller samsvarelser).

For å undersøke om VO2 er normalfordelt skal vi laget et normalfordelingsplott. Da går vi tilbake til Analyze/Descriptive Statistics/Explore, og vi klikker på Plots i den høyre knapperekken. Da åpner det seg en ny meny. Der klikker vi på Normality plots with tests. Kan vi anta at VO2 er normalfordelt?

Nei.


Lag en frekvensfordeling for variabelen EXP. Gjør dette via Analyze/Descriptives/Frequencies. Forklar resultatene.
Trinn 1EXPTrenignsprogram
Vi ser her at 117 har fulgt treningsprogrammet og 116 ikke. Når vi har en så jevn fordeling er det naturlig å tenke seg at det ikke er et tilfeldig oppsett, men en designet studie (at halvparten f.eks. har fått et treningsprogram, halvparten ikke).

To prosenter

  • Precent
    Prosentandel av alle svarene
  • Valid precent
    Prosentandel av alle gyldige svar, dvs. ikke talt med “missing values”

Når det er snakk om kategoriske variabler med mange kategorier, f.eks. fødeland, kan det være naturlig å oppsummere det i et stolpediagram.

6. Variabelen FAI er en kontinuerlig variabel som angir graden av aerob svekkelse. Hvis FAI er større eller lik 0 er personen aerob svekket, er FAI mindre enn 0 er personen ikke svekket. Vi skal lage en variabel IMP som angir om personen er svekket eller ikke. Lag da variabelen:

  • IMP = 1 når FAI >= 0
  • IMP = 0 når FAI < 0

newvar1newvar2newvar3newvar4.png
Vi velger ikke “Range, LOWEST through value”, for da tar vi med 0 i begge omganger. Om det finnes “missing values” i datasettet “prikker vi av” “System-missing”-alternativet. Manglende verdier ser ut i datafilen som et åpent felt, men er kodet som en ekstremverdi (enten ekstremt høy eller lav). Disse verdiene tas med dersom vi f.eks. har alle verdier fra 0 og oppover og kan påvirke resultatene vi får. Det kan være lurt å gi den nye variabelen et “label”, f.eks. “Svekkelse”

Label 1.png

Label 2Label 3Frekvenstabell 2.PNG

Lag frekvenstabell som tidligere. Vi ser her at et overveiende flertall opplever å bli svekket (59 v. 174).

9. Lag en deskriptiv analyse av VO2 mht. til IMP. Meningen er da å gi en presentasjon av de sentrale målene, som gjennomsnitt, median, standardavvik etc. for VO2 for de to gruppene av IMP. Gjør dette via Analyze/Descriptive Statistics/Explore. Hva er gjennomsnittene, medianene, standardavvikene og standardfeilen til gjennomsnittet (Std. Error)? Forklar boksplottene.

Det er litt merkelig å undersøke disse forholdene da IMP er basert på VO2 (men la gå).
Trinn 1Trinn 2

Factor2Deskriptiv.PNGFactor1

Observer at det er en forskjell på feilmarginen “Std. Error” mellom gruppen som er svekket (0.7715) og ikke svekket (1.0000). Grunnen til det er fordi vi regner ut feilmarginen ved formelen: standardavvik/roten av antall observasjoner. Hva det vil si i praksis er at det rett og slett er flere som opplever å bli svekket enn ikke.

Boksplottet

  • Mindre spredning (interkvartil avstand, min-max) blant gruppen “ikke svekket”
  • Generelt høyere VO2 for “ikke svekket”

Merk at SPSS har satt ring rundt og skrevet “33” over boksplottet til “ikke svekket” Det er fordi programmet vil understreke at observasjon #33 er i overkant stor (i forhold til normen). Observasjon 33 har VO2-verdien: 59.7 som nærmer seg opptaket til en eliteutøver. Når SPSS skisserer boksplottene gjør de en antagelse om at datasettet er normalfordelt. Observasjoner som er lengre unna gjennomsnittsverdien enn et gitt antall standardavvik markeres automatisk av programmet.

Oppgave 2 (bytte til vo2hr.sav)
Kroppen opptar mer oksygen under arbeid enn under hvile, og for å transportere oksygen til musklene må hjertet slå fortere. Hjertefrekvens er lett å måle, mens oksygenopptaket er vanskeligere. Denne studien er basert på 38 arbeidere. Vi skal studere to arbeidsbetingelser, i det arbeidet er utført med og uten beskyttende arbeidsmaske. Arbeidet er av 19 arbeidere utført uten beskyttende ansiktsmaske og for 19 andre arbeidere er det utført med ansiktsmaske. Målsetningen i studien er å se om det er en sammenheng mellom oksygenopptak (VO2) og hjertefrekvens (HR) for de to arbeidsbetingelsene. Basert på dataene nedenfor skal vi undersøke om dette virker rimelig.

Merk ummidelbart at studieutvalget er svært lite og eventuelle konklusjoner dermed svekkede. 

Relevant informasjon:

  • To faktorer:
    Hjertefrekvens (HR)
    Oksygenopptak (VO2)
  • Med og uten maske
  • 38 arbeidere

analyze-1.pngAnalyze 2Analyze 4.PNG
Kurtosis 1Kurtosis 24. Lag boksplott for VO2 og HR for personer med og uten bruk av ansiktsmaske. Forklar hva du finner. Er fordelingen til disse to variablene symmetriske?

Kurtosis 3

  • HR uten maske
    Vi ser at boksplottet er relativt symmetrisk. Avstandene fra min og max til medianen er ~like. Avstanden fra 1. til 2. (medianen) og 3. til 2. (medianen) kvartil er ganske lik.
  • HR med maske
    Vi ser her at boksplottet er relativt usymmetrisk. Selv om avstanden fra 1. til 2. (medianen) og 3. til 2. kvartil (medianen) er ganske lik, er det stor forskjell på avstandene fra min og max til medianen (og den interkvartile avstanden). Det kan være fordi studieutvalget er for lite.

Sammenligning
Boksplottene viser en tydelig redusert hjertefrekvens for de som hadde på seg maske.

Kurtosis 4

  • VO2-opptak uten maske
    Vi ser at boksplottet er relativt symmetrisk. Avstandene fra min og max til medianen er ~like. Avstanden fra 1. til 2. (medianen) og 3. til 2. (medianen) kvartil er ganske lik.
  • VO2-opptak med maske
    Vi ser at boksplottet er relativt symmetrisk. Avstandene fra min og max til medianen er ~like. Avstanden fra 1. til 2. (medianen) og 3. til 2. (medianen) kvartil er ganske lik.

Sammenligning
Boksplottene viser noe lavere VO2-opptak med maske på. Det er naturlig da masken gjør det vanskeligere å puste.

Tolkning
Resultatene tyder på at det er en assosiasjon mellom maskebruk og både redusert VO2-opptak og hjertefrekvens. En konfunderende faktor kunne vært arbeidsintensitet. Resultatene kan f.eks. forklares ved at de som hadde på seg maske som gjorde det vanskeligere å puste jobbet mindre intenst og viste dermed også lavere hjertefrekvens.

5. Lag normalfordelingsplott for VO2 og HR for personer med og uten bruk av ansiktsmaske. Hva finner du?

Datamengdene samsvarer ikke med en normalfordeling.

Lag et spredningsdiagram for sammenhengen mellom VO2 og HR for dem med og uten ansiktsmaske, med VO2 på y-aksen og HR på x-aksen. Det gjør vi ved å gå til Graphs/Legacy Dialogs/Scatter/Dots. Her klikker vi på Simple Scatter og Define. Vi trekker VO2 over i y-aksen og HR over i x-aksen og MASK over i Set Markers by.Scatter 2scatter 1Scatter 3scatter 4
scatter 5.PNGDet at grafene (regresjonslinjene) er tilnærmet parallelle betyr at veksten (proporsjonalitetskonstanten a i y=ax+b) er ~lik. Grunnen til at grafene er forskjøvet er fordi oksygenopptaket er generelt lavere med maske på (gir mening i praksis!).

8. Forklar sammenhengen mellom oksygenopptak og hjertefrekvens ut fra resultatene fra denne studien.
Vi ser fra regresjonsplottet at forholdet mellom hjertefrekvens (HF) og oksygenopptak (VO2) er tilnærmet konstant uavhengig av faktorer som reduserer oksygentilgangen (maske). Er studien fullstendig konkluderende? Det er de aldri, men ideelt sett kunne vi gjort målingene på nytt med et større utvalg.


ForeleserMorten Valberg