Oppgave 9
1. Forklar hva vi mener med et konfidensintervall. Ta utgangspunkt i den binomiske situasjonen.
Om vi gjentar et forsøk mange ganger, vil et 95% konfidensintervall si at andelen konfidensintervall (basert på en estimert sannsynlighet) som inneholder den sanne populasjonsverdien p er 95%.
Binomisk situasjon: X ~ bin(n, p)
Konfidensintervall: p^ +- 1.96 * sqrt(p^(1-p^)/n) hvor sqrt(p^(1-p^)/n) er den estimerte standardfeilen.
Del 1
1. Gjør de beregningene som er nødvendige for å finne de feilmarginene som er oppgitt over.
Feilmarginene her vil si 1.96 * standardfeilene for et 95% konfidensintervall. Leser av partibarometer og får p^ = 0.297 for Ap og 0.250 for Høyre. Vi finner standardfeil ved Sp = sqrt(p^(1-p^)/n) hvor n er 721. Vi får Sp(Ap) ~= 0.017. 0.017 * 1.96 ~= 0.033. Sp(H) ~= 0.016. 0.016 * 1.96 ~= 0.032
2. Hva skal vi mene med øvre og nedre grense for partitilslutning? Gjør de beregningene som er nødvendig for å finne øvre og nedre grense for Arbeiderpartiet og Høyre. Hva synes du om overskriften til NRK: Dårlig måling for Støre: Ap under 30 prosent
Med øvre og nedre grense mener vi konfidensintervall. Formelen for et 95% konfidensintervall er p^ +- 1.96 * Sp. Vi får for Ap: 0.297 +- 0.033. For høyre får vi: 0.250 +- 0.032. Sannsynligheten for at den sanne oppslutningen for Ap er over 30% er nesten like stor som at den er under. Litt misvisende overskrift.
3. Kan vi bruke tilnærmingen til normalfordelingen i de beregningene vi gjør her? Hvor er det vi bruker den i våre beregninger?
Vi bruker antagelsen når vi regner ut feilmargin og konfidensintervall (øvre/nedre partigrense). Vi kan bruke tilnærmingen pg.a. sentralgrenseteoremet. np og nq er > 5.
Del 2
4. Gi en begrunnelse for at en skulle vente en binomisk fordeling med samme p hvis risikoen for spontanabort var den samme for hver kvinne.
- Kvinnene er uavhengig fra hverandre
- Vi kan måle om hendelsen spontanabort inntreffer
- Sannsynligheten for spontanabort er samme og konstant for hver kvinne
5. Hvilken andel av det totale antallet graviditeter har resultert i spontanabort?
p^ = ((28 + 14 + 15 + 24) = 81) / (70 * 4 = 280) ~= 0.29
6. Beregn et 95% konfidensintervall for andelen spontanaborter. Forklar med ord hva denne betyr. Kan vi bruke tilnærmingen til normalfordelingen her?
p^ ~= 0.29
Sp ~= 0.027
Feilmargin ~= 0.053
95% KI: (0.24, 0.34)
Vi tolker det slik at intervallet (0.24, 0.34) har en 95% for å inneholde den sanne populasjonsverdien p.
Vi kan bruke tilnærming pg.a. sentralgrenseteorem og np & nq > 5.
7. Hvis den binomiske sannsynligheten p settes lik denne andelen, beregn da de forventede antall kvinner med henholdsvis 0, 1, 2, 3 og 4 aborter. Sammenlign med den observerte fordelingen over. Diskuter eventuelle avvik.
(4 0): 0.254 * 70 = 17.78
(4 1): 0.415 * 70 = 29.05
(4 2): 0.254 * 70 = 17.78
(4 3): 0.069 * 70 = 4.83
(4 4): 0.007 * 70 = 0.49
Fra tabellen:
(4 0): 24
(4 1): 28
(4 2): 7
(4 3): 5
(4 4): 6
Vi ser at de forventede tallene vi får ikke stemmer så godt overens med tallene vi observerer. Dette kan tyde på at fordelingen vi har ikke er binomisk og at f.eks. p ikke er lik for alle kvinner.
Oppgave 10
1. Hva er sannsynligheten for at en (tilfeldig valgt) pasient med metabolsk syndrom har hjerte- og karsykdom. Finn et konfidensintervall for denne andelen.
p^ = 29/198 ~= 0.146
Sp ~= 0.025
95% KI: (0.097, 0.195)
2. Beregn differansen i andelen med hjerte- og karsykdom for dem med og uten metabolsk syndrom. Beregn også konfidensintervallet for differansen. Dette må du regne ut for hånd!
p^1 = 0.146
p^2 = 8/73 ~= 0.110
RD = 0.146 – 0.110 = 0.036
Regner ut konfidensintervall:
Finner felles standardfeil Sf = sqrt((p^1 * (1 – p^1) / n1) + (p^2 * (1 – p^2) / n2)) ~= 0.044
95% konfidensintervall er gitt ved: RD +- 1.96 * Sf
Vi får konfidensintervall (-0.05, 0.12).
3. Beregn relativ risiko (RR), med konfidensintervall.
RR = 0.146 / 0.110 ~= 1.33
95% konfidensintervall for RR er definert ved RR * e^(+- 1.96 * SRR) hvor SRR = sqrt(1/29 + 1/8 – 1/198 – 1/73) ~= 0.375. Da får vi konfidensintervall (0.64, 2.77).
4. Beregn også odds ratio (OR), med konfidensintervall.
OR = (29/169) / (8/65) ~= 1.39
95% konfidensintervall for OR er definert ved OR * e^(+- 1.96 * SOR) hvor SOR = sqrt(1/29 + 1/8 + 1/169 + 1/65) ~= 0.425. Da får vi konfidensintervall (0.60, 3.20).
5. Du har i pkt. 2, 3 og 4 beregnet tre alternative mål for effekten som metabolsk syndrom har på hjerte- og karsykdom. Hvilket av disse ville du bruke hvis du skal presentere dette for en gruppe lekfolk?
Alle effektmålene har egne styrker. I denne sammenhengen ville jeg valgt RR eller RD da disse er lettere å forstå. Vi får at en pasient med metabolsk syndrom er ~33% (1.33) mer eksponert for hjerte- og karsykdom. RD forteller oss at den reelle forskjellen er ~3.6%.
6. Sett opp nullhypotesen for å studere om andelene med hjerte- og karsykdom er like for
dem med og uten metabolsk syndrom. Test nullhypotesen. Hvilken konklusjon finner
du?
Vi kan bruke Y-test og Chi-kvadrat-test.
Y-test:
Setter α-nivå = 0.05
H0: p1 = p2
HA: p1 != p2
p^1 ~= 0.146
p^2 ~= 0.110
Finner z-skår, altså Y = (p^1 – p^2) / sqrt(((1/n1)+(1/n2))*p-(1-p-)) hvor p-, den gjennomsnittlige p, = (x1 + x2) / (n1 + n2). Vi får da Y ~= 0.77 som gir i tabellen 0.7794. P-verdi blir da 2*(1 – 0.7794) ~= 0.44. Dette er mye større enn 0.05. Vi kan ikke forkaste H0.
Chi-kvadrat-test:
H0: p1 = p2
HA: p1 != p2
Andel med metabolsk syndrom: 198/271 ~= 0.73
Forventet andel med metabolsk syndrom med hjerte- og karsykdom: 37*0.73 = 27.01
Forventet andel med metabolsk syndrom uten hjerte- og karsykdom: 234*0.73 = 170.82
Andel uten metabolsk syndrom: 73/271 ~= 0.27
Forventet andel uten metabolsk syndrom med hjerte- og karsykdom: 37*0.27 = 9.99
Forventet andel uten metabolsk syndrom med hjerte- og karsykdom: 234*0.27 = 63.18
Vi regner ut teststørrelse X^2:
X^2 = (29 – 27.01)^2 / 27.01 + (169 – 170.82)^2 / 170.82 + (8 – 9.99)^2 / 9.99 + (65 – 63.18)^2 / 63.18 ~= 0.61
Antall frihetsgrader: (kolonner – 1) * (rader – 1) = 1
For α-nivå 0.05 har vi en verdi 3.84. Fordi teststørrelsen vi fant er mye mindre enn 3.84, kan vi ikke forkaste H0.
Oppgave 11
1. Bruk tabellen til å undersøke om andelen med hjerte- og karsykdom avhenger av om personen er overvektig eller ikke. Sett opp en nullhypotese og test den.
Vi kan bruke Y-test og Chi-kvadrat-test.
Y-test:
Setter α-nivå = 0.05
H0: p1 = p2
HA: p1 != p2
p^1 ~= 0.19
p^2 ~= 0.060
Finner z-skår, altså Y = (p^1 – p^2) / sqrt(((1/n1)+(1/n2))*p-(1-p-)) hvor p-, den gjennomsnittlige p, = (x1 + x2) / (n1 + n2). Vi får da Y ~= 6.32 som gir i tabellen > 0.9998. P-verdi blir da < 2*(1 – 0.9998) ~= 0.0004. Dette er mye mindre enn 0.05. Vi kan med god sikkerhet forkaste H0.
Chi-kvadrat-test:
H0: p1 = p2
HA: p1 != p2
Andel med overvekt: 312/994 ~= 0.31
Forventet andel med overvekt med hjerte- og karsykdom: 100*0.31 = 31
Forventet andel med overvekt uten hjerte- og karsykdom: 894*0.31 = 277.14
Andel uten overvekt: 682/994 ~= 0.69
Forventet andel uten overvekt med hjerte- og karsykdom: 100*0.69 = 69
Forventet andel uten overvekt med hjerte- og karsykdom: 894*0.69 = 616.86
Vi regner ut teststørrelse X^2:
X^2 = (60 – 31 )^2 / 31 + (40 – 69)^2 / 69 + (252 – 277.14)^2 / 277.14 + (642 – 616.86)^2 / 616.86 ~= 42.62
Antall frihetsgrader: (kolonner – 1) * (rader – 1) = 1
For α-nivå 0.05 har vi en verdi 3.84. Fordi teststørrelsen vi fant er mye større enn 3.84, kan vi med god sikkerhet forkaste H0.
2. Bruk differansen i andelen med hjerte- og karsykdom som effektmål for effekten av overvekt på hjerte- og karsykdom. Finn et estimat for effekten og lag et konfidensintervall (for hånd!).
p^1 ~= 0.19
p^2 ~= 0.060
RD = 0.19 – 0.060 = 0.13
Regner ut konfidensintervall:
Finner felles standardfeil Sf = sqrt((p^1 * (1 – p^1) / n1) + (p^2 * (1 – p^2) / n2)) ~= 0.024
95% konfidensintervall er gitt ved: RD +- 1.96 * Sf
Vi får konfidensintervall (0.083, 0.18).
3. Bruk relativ risiko som effektmål. Beregn den og finn et konfidensintervall for den.
RR = 0.19 / 0.060 ~= 3.17
95% konfidensintervall for RR er definert ved RR * e^(+- 1.96 * SRR) hvor SRR = sqrt(1/60 + 1/40 – 1/312 – 1/682) ~= 0.19. Da får vi konfidensintervall (2.18, 4.60).
4. Bruk odds ratio som effektmål, beregn den og finn konfidensintervallet.
OR = (60/252) / (40/642) ~= 3.82
95% konfidensintervall for OR er definert ved OR * e^(+- 1.96 * SOR) hvor SOR = sqrt(1/60 + 1/40 + 1/252 + 1/642) ~= 0.22. Da får vi konfidensintervall (2.48, 5.88).
5. Les inn tabellen over i SPSS. Lag variabelnavn, variabel labels og value labels og
presenter selve tabellen.
Kommer senere
6. Beregn RR, OR med tilhørende konfidensintervall ved å bruke SPSS.
Kommer senere
7. Hvordan vil du presentere sammenhengen mellom overvekt og hjerte- og karsykdom, og hvordan vil du konkludere om sammenhengen mellom overvekt og hjerte- og karsykdom?
Alle effektmålene har egne styrker. I denne sammenhengen ville jeg valgt RR eller RD da disse er lettere å forstå. Vi får at en pasient med overvekt er ~317% (3.17) mer eksponert for hjerte- og karsykdom. RD forteller oss at den reelle forskjellen er ~13%. Vi ser at om H0 for RR = 1 og RD = 0, er ingen av disse inkludert i deres tilsvarende 95% konfidensintervall. Vi kan si med 95% sikkerhet at det er en betydelig sammenheng mellom overvekt og økt forekomst av hjerte- og karsykdom.
Foreleser: Simon Lergenmuller
Ressurser
Oppgaver