Gruppeøvelser i statistikk

Oppgave 9
1. Forklar hva vi mener med et konfidensintervall. Ta utgangspunkt i den binomiske situasjonen.
Om vi gjentar et forsøk mange ganger, vil et 95% konfidensintervall si at andelen konfidensintervall (basert på en estimert sannsynlighet) som inneholder den sanne populasjonsverdien p er 95%.

Binomisk situasjon: X ~ bin(n, p)
Konfidensintervall: p^ +- 1.96 * sqrt(p^(1-p^)/n) hvor sqrt(p^(1-p^)/n) er den estimerte standardfeilen.

Del 1
1. Gjør de beregningene som er nødvendige for å finne de feilmarginene som er oppgitt over.
Feilmarginene her vil si 1.96 * standardfeilene for et 95% konfidensintervall. Leser av partibarometer og får p^ = 0.297 for Ap og 0.250 for Høyre. Vi finner standardfeil ved Sp = sqrt(p^(1-p^)/n) hvor n er 721. Vi får Sp(Ap) ~= 0.017. 0.017 * 1.96 ~= 0.033. Sp(H) ~= 0.016. 0.016 * 1.96 ~= 0.032

2. Hva skal vi mene med øvre og nedre grense for partitilslutning? Gjør de beregningene som er nødvendig for å finne øvre og nedre grense for Arbeiderpartiet og Høyre. Hva synes du om overskriften til NRK: Dårlig måling for Støre: Ap under 30 prosent
Med øvre og nedre grense mener vi konfidensintervall. Formelen for et 95% konfidensintervall er p^ +- 1.96 * Sp. Vi får for Ap: 0.297 +- 0.033. For høyre får vi: 0.250 +- 0.032. Sannsynligheten for at den sanne oppslutningen for Ap er over 30% er nesten like stor som at den er under. Litt misvisende overskrift.

3. Kan vi bruke tilnærmingen til normalfordelingen i de beregningene vi gjør her? Hvor er det vi bruker den i våre beregninger?
Vi bruker antagelsen når vi regner ut feilmargin og konfidensintervall (øvre/nedre partigrense). Vi kan bruke tilnærmingen pg.a. sentralgrenseteoremet. np og nq er > 5.

Del 2
4. Gi en begrunnelse for at en skulle vente en binomisk fordeling med samme p hvis risikoen for spontanabort var den samme for hver kvinne.

  1. Kvinnene er uavhengig fra hverandre
  2. Vi kan måle om hendelsen spontanabort inntreffer
  3. Sannsynligheten for spontanabort er samme og konstant for hver kvinne

5. Hvilken andel av det totale antallet graviditeter har resultert i spontanabort?
p^ = ((28 + 14 + 15 + 24) = 81) / (70 * 4 = 280) ~= 0.29

6. Beregn et 95% konfidensintervall for andelen spontanaborter. Forklar med ord hva denne betyr. Kan vi bruke tilnærmingen til normalfordelingen her?
p^ ~= 0.29
Sp ~= 0.027
Feilmargin ~= 0.053
95% KI: (0.24, 0.34)
Vi tolker det slik at intervallet (0.24, 0.34) har en 95% for å inneholde den sanne populasjonsverdien p.

Vi kan bruke tilnærming pg.a. sentralgrenseteorem og np & nq > 5.

7. Hvis den binomiske sannsynligheten p settes lik denne andelen, beregn da de forventede antall kvinner med henholdsvis 0, 1, 2, 3 og 4 aborter. Sammenlign med den observerte fordelingen over. Diskuter eventuelle avvik.
(4 0): 0.254 * 70 = 17.78
(4 1): 0.415 * 70 = 29.05
(4 2): 0.254 * 70 = 17.78
(4 3): 0.069 * 70 = 4.83
(4 4): 0.007 * 70 = 0.49

Fra tabellen:
(4 0): 24
(4 1): 28
(4 2): 7
(4 3): 5
(4 4): 6

Vi ser at de forventede tallene vi får ikke stemmer så godt overens med tallene vi observerer. Dette kan tyde på at fordelingen vi har ikke er binomisk og at f.eks. p ikke er lik for alle kvinner.

Oppgave 10
1. Hva er sannsynligheten for at en (tilfeldig valgt) pasient med metabolsk syndrom har hjerte- og karsykdom. Finn et konfidensintervall for denne andelen.
p^ = 29/198 ~= 0.146
Sp ~= 0.025
95% KI: (0.097, 0.195)

2. Beregn differansen i andelen med hjerte- og karsykdom for dem med og uten metabolsk syndrom. Beregn også konfidensintervallet for differansen. Dette må du regne ut for hånd!
p^1 = 0.146
p^2 = 8/73 ~= 0.110
RD = 0.146 – 0.110 = 0.036

Regner ut konfidensintervall:
Finner felles standardfeil Sf = sqrt((p^1 * (1 – p^1) / n1) + (p^2 * (1 – p^2) / n2)) ~= 0.044
95% konfidensintervall er gitt ved: RD +- 1.96 * Sf
Vi får konfidensintervall (-0.05, 0.12).

3. Beregn relativ risiko (RR), med konfidensintervall.
RR = 0.146 / 0.110 ~= 1.33

95% konfidensintervall for RR er definert ved RR * e^(+- 1.96 * SRR) hvor SRR = sqrt(1/29 + 1/8 – 1/198 – 1/73) ~= 0.375. Da får vi konfidensintervall (0.64, 2.77).

4. Beregn også odds ratio (OR), med konfidensintervall.
OR = (29/169) / (8/65) ~= 1.39

95% konfidensintervall for OR er definert ved OR * e^(+- 1.96 * SOR) hvor SOR = sqrt(1/29 + 1/8 + 1/169 + 1/65) ~= 0.425. Da får vi konfidensintervall (0.60, 3.20).

5. Du har i pkt. 2, 3 og 4 beregnet tre alternative mål for effekten som metabolsk syndrom har på hjerte- og karsykdom. Hvilket av disse ville du bruke hvis du skal presentere dette for en gruppe lekfolk?
Alle effektmålene har egne styrker. I denne sammenhengen ville jeg valgt RR eller RD da disse er lettere å forstå. Vi får at en pasient med metabolsk syndrom er ~33% (1.33) mer eksponert for hjerte- og karsykdom. RD forteller oss at den reelle forskjellen er ~3.6%.

6. Sett opp nullhypotesen for å studere om andelene med hjerte- og karsykdom er like for
dem med og uten metabolsk syndrom. Test nullhypotesen. Hvilken konklusjon finner
du?
Vi kan bruke Y-test og Chi-kvadrat-test.

Y-test:
Setter α-nivå = 0.05
H0: p1 = p2
HA: p1 != p2

p^1 ~= 0.146
p^2 ~= 0.110

Finner z-skår, altså Y = (p^1 – p^2) / sqrt(((1/n1)+(1/n2))*p-(1-p-)) hvor p-, den gjennomsnittlige p, = (x1 + x2) / (n1 + n2). Vi får da Y ~= 0.77 som gir i tabellen 0.7794. P-verdi blir da 2*(1 – 0.7794) ~= 0.44. Dette er mye større enn 0.05. Vi kan ikke forkaste H0.

Chi-kvadrat-test:
H0: p1 = p2
HA: p1 != p2

Andel med metabolsk syndrom: 198/271 ~= 0.73
Forventet andel med metabolsk syndrom med hjerte- og karsykdom: 37*0.73 = 27.01
Forventet andel med metabolsk syndrom uten hjerte- og karsykdom: 234*0.73 = 170.82

Andel uten metabolsk syndrom: 73/271 ~= 0.27
Forventet andel uten metabolsk syndrom med hjerte- og karsykdom: 37*0.27 = 9.99
Forventet andel uten metabolsk syndrom med hjerte- og karsykdom: 234*0.27 = 63.18

Vi regner ut teststørrelse X^2:
X^2 = (29 – 27.01)^2 / 27.01 + (169 – 170.82)^2 / 170.82 + (8 – 9.99)^2 / 9.99 + (65 – 63.18)^2 / 63.18 ~= 0.61

Antall frihetsgrader: (kolonner – 1) * (rader – 1) = 1
For α-nivå 0.05 har vi en verdi 3.84. Fordi teststørrelsen vi fant er mye mindre enn 3.84, kan vi ikke forkaste H0.

Oppgave 11
1. Bruk tabellen til å undersøke om andelen med hjerte- og karsykdom avhenger av om personen er overvektig eller ikke. Sett opp en nullhypotese og test den.
Vi kan bruke Y-test og Chi-kvadrat-test.

Y-test:
Setter α-nivå = 0.05
H0: p1 = p2
HA: p1 != p2

p^1 ~= 0.19
p^2 ~= 0.060

Finner z-skår, altså Y = (p^1 – p^2) / sqrt(((1/n1)+(1/n2))*p-(1-p-)) hvor p-, den gjennomsnittlige p, = (x1 + x2) / (n1 + n2). Vi får da Y ~= 6.32 som gir i tabellen > 0.9998. P-verdi blir da < 2*(1 – 0.9998) ~= 0.0004. Dette er mye mindre enn 0.05. Vi kan med god sikkerhet forkaste H0.

Chi-kvadrat-test:
H0: p1 = p2
HA: p1 != p2

Andel med overvekt: 312/994 ~= 0.31
Forventet andel med overvekt med hjerte- og karsykdom: 100*0.31 = 31
Forventet andel med overvekt uten hjerte- og karsykdom: 894*0.31 = 277.14

Andel uten overvekt: 682/994 ~= 0.69
Forventet andel uten overvekt med hjerte- og karsykdom: 100*0.69 = 69
Forventet andel uten overvekt med hjerte- og karsykdom: 894*0.69 = 616.86

Vi regner ut teststørrelse X^2:
X^2 = (60 – 31 )^2 / 31 + (40 – 69)^2 / 69 + (252 – 277.14)^2 / 277.14 + (642 – 616.86)^2 / 616.86 ~= 42.62

Antall frihetsgrader: (kolonner – 1) * (rader – 1) = 1
For α-nivå 0.05 har vi en verdi 3.84. Fordi teststørrelsen vi fant er mye større enn 3.84, kan vi med god sikkerhet forkaste H0.

2. Bruk differansen i andelen med hjerte- og karsykdom som effektmål for effekten av overvekt på hjerte- og karsykdom. Finn et estimat for effekten og lag et konfidensintervall (for hånd!).
p^1 ~= 0.19
p^2 ~= 0.060
RD = 0.19 – 0.060 = 0.13

Regner ut konfidensintervall:
Finner felles standardfeil Sf = sqrt((p^1 * (1 – p^1) / n1) + (p^2 * (1 – p^2) / n2)) ~= 0.024
95% konfidensintervall er gitt ved: RD +- 1.96 * Sf
Vi får konfidensintervall (0.083, 0.18).

3. Bruk relativ risiko som effektmål. Beregn den og finn et konfidensintervall for den.
RR = 0.19 / 0.060 ~= 3.17

95% konfidensintervall for RR er definert ved RR * e^(+- 1.96 * SRR) hvor SRR = sqrt(1/60 + 1/40 – 1/312 – 1/682) ~= 0.19. Da får vi konfidensintervall (2.18, 4.60).

4. Bruk odds ratio som effektmål, beregn den og finn konfidensintervallet.
OR = (60/252) / (40/642) ~= 3.82

95% konfidensintervall for OR er definert ved OR * e^(+- 1.96 * SOR) hvor SOR = sqrt(1/60 + 1/40 + 1/252 + 1/642) ~= 0.22. Da får vi konfidensintervall (2.48, 5.88).

5. Les inn tabellen over i SPSS. Lag variabelnavn, variabel labels og value labels og
presenter selve tabellen.
Kommer senere

6. Beregn RR, OR med tilhørende konfidensintervall ved å bruke SPSS.
Kommer senere

7. Hvordan vil du presentere sammenhengen mellom overvekt og hjerte- og karsykdom, og hvordan vil du konkludere om sammenhengen mellom overvekt og hjerte- og karsykdom?
Alle effektmålene har egne styrker. I denne sammenhengen ville jeg valgt RR eller RD da disse er lettere å forstå. Vi får at en pasient med overvekt er ~317% (3.17) mer eksponert for hjerte- og karsykdom. RD forteller oss at den reelle forskjellen er ~13%. Vi ser at om H0 for RR = 1 og RD = 0, er ingen av disse inkludert i deres tilsvarende 95% konfidensintervall. Vi kan si med 95% sikkerhet at det er en betydelig sammenheng mellom overvekt og økt forekomst av hjerte- og karsykdom.


ForeleserSimon Lergenmuller

Ressurser
Oppgaver

Konfidensintervall

Hovedsakelig små avvik fra presentasjonen

  • Tradisjonelt sett forholder vi oss til at populasjonen er uendelig stor.
    Det er praktisk vanskelig å få tall på hele populasjonen da det ofte står store logistiske og økonomiske utfordringer i veien.

  • Konfidensintervall som hypotesetesting
    Konfidensintervall gir oss samme konklusjon som en tradisjonell hypotesetesting (H0, 1). Dersom konfidensintervallet ikke dekker nullverdien (H0-verdien), vil p-verdien være mindre enn 0.05 (signifikansnivået).

Foreleser: Magne Thoresen

Ressurser
Presentasjon

Gruppeøvelser i statistikk

Oppgave 6
Symptomer som vedvarende hoste og blodtilblandet oppspytt kan være symptomer på lungekreft, og vi vil studere denne muligheten nærmere. I data fra Kreftregisteret finner vi at det i 1993 var fem tilfeller av lungekreft blant norske menn i alderen 30‐39 år. Befolkningstallet av menn i denne aldersgruppen var 325.000. Prevalensen av lungekreft vil omtrent være lik insidensen og kan derfor settes lik 5/325.000.

1. Vedvarende hoste kan være et symptom på lungekreft. Hvis slik hoste betraktes som en diagnostisk indikator, kan en anslå at sensitiviteten er 95%, mens spesifisiteten er 90%. Forklar hva disse tallene betyr i den konkrete sammenhengen vi har her.
Sensitivitet
Hva er sannsynlighet for at en syk pasient får positivt utslag på en test?
Sannsynligheten for at pasienten har hoste gitt lungekreft.

Spesifisitet
Hva er sannsynligheten for at en frisk pasient får negativt utslag på en test?
Sannsynligheten for at pasienten ikke har hoste gitt ikke lungekreft.

2. Beregn den positive prediktive verdi av hoste som symptom på lungekreft for en mann i alderen 30‐39 år. Forklar hva tallet betyr.
Sensitivitet: 0.95
Spesifisitet: 0.90
Vi bruker Bayes lov:
PPV = Sensitivitet * Prevalens / (Sensitivitet * Prevalens + (1 – Spesifisitet) * (1 – Prevalens)) = (0.95 * 5/325000) / ((0.95 * 5/325000) + (1 – 0.90) * (1 – 5/325000)) ~= 0.000146 = 0.00015 = 0.015%

PPV er sannsynligheten for at en positiv diagnose er riktig.

3. Sammenlign med prevalensen: hvor mye vil sannsynligheten for lungekreft være forøket når det foreligger vedvarende hoste?
PPV: Sannsynligheten for at pasienten har lungekreft gitt hoste, dvs. 0.015%. Prevalensen er 0.0015%. En pasient med vedvarende hoste er ti ganger mer sannsynlig å ha lungekreft.

4. Hvis det foreligger både vedvarende hoste og blodtilblandet oppspytt, og vi betrakter kombinasjonen som en diagnostisk indikator for lungekreft, vil sensitiviteten bli redusert til 90%, mens spesifisiteten øker til 99%. Forklar hvorfor det å innføre en kombinasjon av to symptomer, og forlange at begge skal være tilstede, generelt må forventes å føre til redusert sensitivitet og forøket spesifisitet.
Sensitiviteten i denne sammenhengen vil da være sannsynligheten for at en pasient med lungekreft har både vedvarende hoste og blodtilblandet oppspytt. Kriteriene er strengere og det er derfor færre pasienter som regnes med enn når vi bare behøvde en enkel indikator. På den andre siden er det flere som blir regnet med i spesifisiteten, da alle andre kombinasjoner enn begge symptomer havner i spesifisiteten (dvs. enten vedvarende hoste eller blodtilblandet oppspytt og ingen av delene vs. begge deler).

5. Hvis det i tillegg er kjent at pasienten røyker 20‐25 sigaretter per dag vil prevalensen være ti ganger så høy som det som ble benyttet ovenfor. Beregn nå den positive prediktive verdi. Hvor mye er den forøket i forhold til det du fant over? Bruk sensitivitet og spesifisitet fra pkt. 1.
Sensitivitet: 0.95
Spesifisitet: 0.90
Vi bruker Bayes lov:
PPV = Sensitivitet * Prevalens / (Sensitivitet * Prevalens + (1 – Spesifisitet) * (1 – Prevalens)) = (0.95 * (50/325000)) / ((0.95 * (50/325000)) + (1 – 0.90) * (1 – (50/325000))) ~= 0.00146 = 0.146% ~= 0.15%. Denne er 100 ganger større enn 0.0015%.

Oppgave 7
1. Forklar hva vi mener med en binomisk sannsynlighetsfordeling. Hvilke betingelser må være oppfylt for at variabel skal være binomisk fordelt?
ref
En suksessfordeling av binære utfall ved n forsøk.

  • Begivenhetene må være uavhengige
  • Begivenhetene må være binære (to utfall)
  • Sannsynlighetene for utfallene må være statiske

2. Diskuter hva vi mener med en statistisk nullhypotese og alternativhypotesen.
Ved hypotesetesting forsøker vi å bevise en alternativhypotese ved å falsifisere en (nøytral) nullhypotese. Nullhypotesen er en beskrivelse av en antatt virkelighet. Alternativhypotesen er en beskrivelse vi prøver å bevise er en bedre antagelse.

3. Sett opp en nullhypotese og en alternativhypotese for sannsynligheten p i en binomisk situasjon.
ref

4. Diskuter hva vi mener med en p-verdi. Hvordan regner vi ut en p-verdi i en binomisk situasjon?
ref

En (europeisk) rulett har 37 felter, som er nummerert 0 og 1 til 36. Feltet 0 har fargen grønn, 18 er røde og 18 er sorte. Croupieren (spillelederen) spinner hjulet og ruller en liten ball langs hjulet i motsatt retning. Hjulet er balansert slik at det er like sannsynlig å lande på alle feltene. Spillerne kan spille på alle kombinasjoner av tall og farger.

5. Hva er sannsynligheten for at kulen skal falle på rødt?
18/37

6. En spiller bestemmer seg for å spille 6 ganger. Han teller opp antall ganger kulen faller på rødt felt og kaller dette antallet for X. Hva slags sannsynlighetsfordeling har da X?
Binomisk fordeling

7. Spilleren observerer at det kommer rødt 6 ganger etter hverandre. Han betviler at spillet er rettferdig, og vil bruke sin statistiske kunnskap til å utføre en statistisk test før han bestemmer seg for å «avsløre» om spillet er urettferdig. Hva er den statistiske nullhypotesen og hva er alternativhypotesen han setter opp?
H0: P(R) = 18/37
H1: P(R) != 18/37 (i denne sammenheng P(R) > 18/37)

8. Spilleren baserer selve testen på antall ganger han får rødt, altså X, og velger å forkaste nullhypotesen når X er stor. Hva er p-verdien for testen han utfører?
P(6R) = (6 av 6) * (18/37)^6 * (19/37)^0 = (6!/6!) * (18/37)^6 ~= 0.013 = 1.3%. P-verdien er 1.3%. Dette er under det typiske signifikansnivået på 5% som vil si at vi kan forkaste H0.

9. Hvis spilleren hadde observert 5 røde, og ikke 6 som over, hva hadde p-verdien vært da?
P(5R) = (5 av 6) * (18/37)^5 * (19/37) = (6!/(5!)) * … ~= 0.084 = 8.4%. Dette er over det typiske signifikansnivået på 5% som vil si at vi ikke kan forkaste H0.

10. Basert på resultatet med 6 kuler på rad på rødt, vil du gå til ledelsen for kasinoet og fortelle dem at spillet deres er urettferdig?
Det kan jo godt være en tilfeldighet, men om det skjedde konsekvent ville jeg sagt ifra. Utvalget vårt (antall observasjoner) er for “øyeblikket” for lite til å konkludere med sikkerhet.

Oppgave 8
Vi vet at forhøyet kolesterol er en risikofaktor for hjertesykdom. Det kan derfor være viktig å holde kolesterolnivået lavt, og forhindre moderat eller uttalt forhøyet nivå. Vi sier i denne sammenhengen at forhøyet kolesterol er verdier over 250 mg/dL (=6.5 mmol/l). Vi ønsker å kontrollere kolesterolnivået hos barn. Fra tidligere vet vi fra store studier av 
kolesterol (i blod) hos barn i alderen 2-14 år at gjennomsnittet er 175 mg/dL og standardavviket er 30 mg/dL.

1. Anta nå at målt kolesterol kan betraktes som normalfordelt. Hva er da sannsynligheten for at et barn skal ha kolesterolnivå over 250 mg/dL?
μ = 175 mg/dL
σ = 30 mg/dL
Vi standardiserer fordelingen ved Y = (X – μ)/σ.
P(Y > 250) = 1- P(Y < 250) = 1 – P((X – 175)/30 < ((250 – 175)/30) = 1 – P((X – 175)/30 < 2.5) = 1 – 0.9938 = 0.0062 = 0.62%
*Har stått feil her tidligere (-2.5), men riktig svar

2. Hvis vi undersøker 50.000 barn hvert år, hvor mange vil vi oppdage med forhøyet kolesterolverdi?
E(X) = 50000 * 0.0062 = 310

3. Hvor høyt kolesterolnivå har du hvis du er blant de 10% med høyest kolesterol?
P(Y < z) = 0.9
Sannsynligheten for å finne en verdi med standardavvik mindre enn en tenkt standardisert verdi x er 90%, dvs. den tenkte verdien er blant de høyeste 10%.

Ser i tabellen og finner at x = 1.28. Det nærmeste vi kommer 0.9000 er 0.8997. Gjør om fra standardisert format ved Y = (X – μ)/σ. 1.28 = (X – 175)/30 –> X = 213.4. Det vil si at en må ha kolesterolnivå på minst ~213.4 mg/dL for å kvalifiseres innen topp 10%.

Vi antar at det er sammenheng mellom forhøyet kolesterol hos foreldre og hos barn. I et utvalg av menn som har hatt hjerteinfarkt og som har forhøyede kolesterolverdier (altså verdier ≥ 250 mg/dL), måles kolesterolverdiene til deres barn i alderen 2-14. Gjennomsnittlig kolesterol for disse er 207 mg/dL, fortsatt med et standardavvik på 30 mg/dL.

4. Hva er sannsynligheten for at et barn, med en far som har hatt hjerteinfarkt, skal ha et kolesterolnivå mellom 207 mg/dL og 250 mg/dL?
P(Y>207) og P(Y<250)
Y = (X – μ)/σ.
P((X – 207)/30 > (207 – 207)/30)  = 1 – P((X – 207)/30 < 0) = 0.5000
P((X – 207)/30 < (250-207)/30) = P((X – 207)/30 < 1.43) = 0.9236
0.9236 – 0.5000 = 0.4236

5. Hva er sannsynligheten for at et barn med en far som har hatt hjerteinfarkt skal ha forhøyet kolesterolverdi?
P(Y>250) = 1 – P(Y<250) = 1 – P((X-207)/30) < (250-207)/30) = 1 – 0.9236 = 0.0764 = 7.64%

6. Hvis man undersøker 1.000 barn med fedre som har hatt infarkt, hvor mange vil man da oppdage? Kommenter dette resultatet opp mot det du fant i 2.
1000 * 0.0764 = 76.4
50000 * 0.0764 = 3820
I #2 var det 310.
3820 / 310 ~= 12.3 ganger flere.
(Evt. 0.0764 / 0.0062 ~= 12.3)

7. Vil du anbefale tester av kolesterol blant barn (og av utvalgte risikogrupper) for å avsløre forhøyet kolesterol?
Ja.

Vi ser på ut utvalg på 10 barn som har fedre som har hatt hjerteinfarkt og som har forhøyede kolesterolverdier. Sannsynligheten for at et tilfeldig valgt barn har forhøyet kolesterolverdier er den du fant i 5.

8. Kan dette antas å være et binomisk forsøk? Hvilke kriterier må være til stede?
En suksessfordeling av binære utfall ved n forsøk.

  • Begivenhetene må være uavhengige
  • Begivenhetene må være binære (to utfall)
  • Sannsynlighetene for utfallene må være statiske

Ja.

9. Hva er sannsynligheten for at mindre enn 2 av disse har forhøyet kolesterolverdier? Er det greit å bruke tilnærmingen til normalfordelingen her?
Nei, da utvalget ikke er stort nok.

Mindre enn 2 = 1 og 0
P(<2) = (1 av 10) * 0.0764^1 * (1-0.0764)^9 + (0 av 10) * 0.0764^0 * (1-0.0764)^10
P(<2) = 0.3736 + 0.4517 = 0.8253 ~= 0.83 = 83%


ForeleserSimon Lergenmuller

Ressurser
Oppgaver

Innledning, sannsynlighetsregning I

Hvorfor statistikk på medisinstudiet?
The New england Journal of Medicine, et av verdens mest toneangivende medisinske fagtidsskrifter, samlet en liste av det de mente var de viktigste innovasjonene innen medisinsk behandling de siste tusen årene. På den listen hadde de inkludert medisinsk statistikk. Hvorfor det? Jo, fordi det er et viktig verktøy for å dokumentere og tolke data. Behandlingsprosessen forenkles ofte til fire steg:

  1. Forebygge
    Hva er årsaken?
  2. Diagnostisere
    Hvilken sykdom?
  3. Behandle
    Hvilken behandling?
  4. Prognose
    Hvordan går det etter?

Alle de fire trinnene har en viss mengde usikkerhet. Statistikkens oppgave er å kvantifisere denne. Siden 1950 har statistikk bare blitt viktigere og viktigere innen medisinsk forskning.

For lite fisk gjør oss mentalt svakeDet er klart at leger i løpet av karrieren vil komme i møte med pasienter som har dårlig kjennskap til statistikk og stor tiltro til tabloidmagasiner. Konklusjoner dratt fra statistiske data blir ofte mistolket og forenklet. I praksis er det svært tøft å finne koblinger som er 100% sikre. F.eks. var det en gruppe i Kina som drev forskning på om chili kunne forlenge livet. De samlet ~500 000 folk, spurte dem om spisevanene deres, og fulgte dem opp i 9 år. Resultatene tydet på at de som (hevdet at de) spiste chili 1-2 ganger i uka hadde i snitt en dødelighet som var ~10% lavere enn kontrollgruppen. De som spiste chili mer enn > 3 ganger i uka opplevde en reduksjon på 14%. Relativ risiko var satt til 0.86. Likevel er det ikke så enkelt som at man dermed kan fastslå med sikkerhet at chili øker forventet levealder. Studien kontrollerte for eksempel ikke for andre faktorer (salt-inntak, livsstil osv.). Derfor var konklusjonen at studien i likhet med andre epidemiologiske studier kun kunne etablere assosiasjoner.

I sammenheng med medisinsk statistikk, er det noen stikkord det er lurt å ha orden på:

  • Epidemiologiske studier
    Studiet av helsetilstand og sykdomsutbredelse i en befolkning, og av årsaker til sykdom og død.
  • Prospektiv studie
    En prospektiv studie går gjerne under navnet kohortstudie. I epidemiologi betegner det studier hvor grupper følges opp over tid og undersøkes for sykdom.
  • Median
    I statistikken er medianen den verdien av en variabel som ligger midt i det statistiske materialet. Det vil si at like mange individer i materialet har verdier over medianen som under den. Dersom antallet observasjoner er et partall defineres medianen vanligvis som det aritmetiske gjennomsnittet av de to midterste verdiene.
  • Relativ risiko
    Den relative risikoen er forholdet mellom sannsynligheten for at individer som har blitt eksponert for sykdomsfremkallende fenomen utvikler død eller sykdom og tilsvarende sannsynlighet for dem det ikke gjelder.
  • Assosiasjoner / kausale sammenhenger
    Det er viktig å skille assosiasjon og årsakssammenheng. En kausal sammenheng mellom to fenomener er når et av dem fører direkte til det andre. Begrepet assosiasjon er vagere og brukes for å beskrive styrken til forholdet mellom to fenomener.
  • Kontrollere for
    Diskutere variabler og studiestruktur
  • Konfunderende faktor
    Når assosiasjonen mellom to hendelser (delvis) kommer av at begge har en felles årsak kalles det en konfundering. En konfunderende faktor kalles også for en bakenforliggende faktor. Dersom sammenhengen mellom årsaks- og virkningsvariablene skyldes en bakenforliggende faktor sier vi at sammenhengen er spuriøs. Kort fortalt: forskere finner en assosiasjon mellom A og B. Det viser seg at C påvirker både A og B (eller direkte forårsaker). Sammenhengen mellom A og B blir da spuriøs. Det vil si at en tilsynelatende kausal sammenheng ikke egentlig er tilstede enten tilfeldig eller grunnet en tredje faktor C som da kalles en konfunderende faktor.
    Eksempel på en konfunderende faktor: 
    Morens alder påvirker sannsynligheten for at fosteret utvikler Downs syndrom. I en undersøkelse av prevalensen av Downs syndrom i hvert søskenledd (første barn, andre barn, tredje barn usw.), kan morens alder kalles en konfunderende faktor.

Typer data
I første omgang har vi to (tre) typer data:

  • Kategorisk data
    Data som skal settes i bestemte “kategorier”, eksempel: kjønn, fødeland, sivilstatus, andeler (30% av X)
  • Kontinuerlig data
    I all hovedsak numeriske data, eksempel: alder, vekt, blodtrykk, kolesterol-nivå (riktignok telles kanskje ikke alder i praksis som en type kontinuerlig data da det sjeldent forekommer at folk svarer med desimal).
  • Diskrete numeriske data
    Eksempel: telledata, teller antall (eks. antall mål i en fotballkamp). Innen diskrete numeriske data gjelder kun naturlige tall.

Standardavvik og prevalens
Standardavvik
er definert som kvadratroten av variansen, på engelsk variance, og er et mål for spredningen av verdiene i et datasett (verdienes gjenomsnittlige avstand fra tyngdepunktet / det aritmetiske gjennomsnittet). Det er et viktig verktøy fordi andre metoder som for eksempel min-maks ser bare på ekstremene, noe som ikke nødvendigvis er nyttig for å illustrere den faktiske fordelingen av verdiene.

Prevalens er enkelt forklart andelen av en befolkning med en viss tilstand. Per 31. desember 2016 var det registrert 7507 pasienter i live med lungekreft. På samme tid var befolkningstallet i Norge ~5 258 317. Vi regner ut andelen (andel = kakestykket (7507) / kaken (5 258 317) og får som svar ~ 0.00143. Prevalensen av lungekreft i Norge var altså ved nyttår 2016 ~14.3 per 10 000 innbyggere. Det går an å trekke linja lenger og se på hvordan prevalensen har utviklet seg gjennom årene. Observasjoner viser nemlig at prevalensen av lungekreft har økt de siste årene. Hva kan det tyde på?

  • Flere tilfeller?
  • Bedre overlevelse?
    Flere overlever lengre med lungekreft (og generelt)
  • Endring i diagnostiske kriterier?
    Hva skal betegnes som lungekreft?

Ressurser
Det anbefales å sjekke ut fagsiden for medisinsk statistikk. SPSS er en programvarepakke som vil utnyttes i kurset. UiO har skrevet en egen instruksjonsmanual for å hjelpe studentene med innføringen. Det er ikke tenkt at medisinstudenter skal lese gjennom hele manualen, men den er nyttig for å bla i når det trengs.

AalenDersom man er stolt eier av Aalens bok, er det greit å vite at kapittel 7 (poissonfordeling), 12 (logistisk regresjon), 14 (Bayesiansk analyse) er utenfor pensum.

Foreleser vil være tilgjengelig for veiledningstimer gjennom semesteret. Det er først og fremst et lavterskeltilbud hvor studenter kan få svar på spørsmål de har rundt faget. “Åpningstidene” ligger ute på fagsiden. Det blir fort kø når det nærmer seg eksamen, men av erfaring lite fart før den tid.

I gruppeundervisningen i statistikk blir smågruppene på 10 igjen delt i to grupper på 5 (dvs. f.eks. 1A & 1B, 2A & 2B, usw.) som deretter blir satt sammen tre og tre. Gruppeaktivitetene kommer hovedsakelig til å finne sted i PC-stuene R211 (plass til 35, Rotunden), og en mindre (plass til 25, 2. etg ved bokhandleren Akademika). Første gruppeundervisning fredag 24. august. Opplegget er ment å være studentdrevet. Alle gruppene skal forberede en presentasjon / forelesning på et tema.

Beskjed fra foreleser
Ikke vær redd for å stille spørsmål du synes er dumme eller tåpelige!


ForeleserMagne Thoresen

Ressurser
Presentasjon