Gruppeøvelser i statistikk

Oppgave 6
Symptomer som vedvarende hoste og blodtilblandet oppspytt kan være symptomer på lungekreft, og vi vil studere denne muligheten nærmere. I data fra Kreftregisteret finner vi at det i 1993 var fem tilfeller av lungekreft blant norske menn i alderen 30‐39 år. Befolkningstallet av menn i denne aldersgruppen var 325.000. Prevalensen av lungekreft vil omtrent være lik insidensen og kan derfor settes lik 5/325.000.

1. Vedvarende hoste kan være et symptom på lungekreft. Hvis slik hoste betraktes som en diagnostisk indikator, kan en anslå at sensitiviteten er 95%, mens spesifisiteten er 90%. Forklar hva disse tallene betyr i den konkrete sammenhengen vi har her.
Sensitivitet
Hva er sannsynlighet for at en syk pasient får positivt utslag på en test?
Sannsynligheten for at pasienten har hoste gitt lungekreft.

Spesifisitet
Hva er sannsynligheten for at en frisk pasient får negativt utslag på en test?
Sannsynligheten for at pasienten ikke har hoste gitt ikke lungekreft.

2. Beregn den positive prediktive verdi av hoste som symptom på lungekreft for en mann i alderen 30‐39 år. Forklar hva tallet betyr.
Sensitivitet: 0.95
Spesifisitet: 0.90
Vi bruker Bayes lov:
PPV = Sensitivitet * Prevalens / (Sensitivitet * Prevalens + (1 – Spesifisitet) * (1 – Prevalens)) = (0.95 * 5/325000) / ((0.95 * 5/325000) + (1 – 0.90) * (1 – 5/325000)) ~= 0.000146 = 0.00015 = 0.015%

PPV er sannsynligheten for at en positiv diagnose er riktig.

3. Sammenlign med prevalensen: hvor mye vil sannsynligheten for lungekreft være forøket når det foreligger vedvarende hoste?
PPV: Sannsynligheten for at pasienten har lungekreft gitt hoste, dvs. 0.015%. Prevalensen er 0.0015%. En pasient med vedvarende hoste er ti ganger mer sannsynlig å ha lungekreft.

4. Hvis det foreligger både vedvarende hoste og blodtilblandet oppspytt, og vi betrakter kombinasjonen som en diagnostisk indikator for lungekreft, vil sensitiviteten bli redusert til 90%, mens spesifisiteten øker til 99%. Forklar hvorfor det å innføre en kombinasjon av to symptomer, og forlange at begge skal være tilstede, generelt må forventes å føre til redusert sensitivitet og forøket spesifisitet.
Sensitiviteten i denne sammenhengen vil da være sannsynligheten for at en pasient med lungekreft har både vedvarende hoste og blodtilblandet oppspytt. Kriteriene er strengere og det er derfor færre pasienter som regnes med enn når vi bare behøvde en enkel indikator. På den andre siden er det flere som blir regnet med i spesifisiteten, da alle andre kombinasjoner enn begge symptomer havner i spesifisiteten (dvs. enten vedvarende hoste eller blodtilblandet oppspytt og ingen av delene vs. begge deler).

5. Hvis det i tillegg er kjent at pasienten røyker 20‐25 sigaretter per dag vil prevalensen være ti ganger så høy som det som ble benyttet ovenfor. Beregn nå den positive prediktive verdi. Hvor mye er den forøket i forhold til det du fant over? Bruk sensitivitet og spesifisitet fra pkt. 1.
Sensitivitet: 0.95
Spesifisitet: 0.90
Vi bruker Bayes lov:
PPV = Sensitivitet * Prevalens / (Sensitivitet * Prevalens + (1 – Spesifisitet) * (1 – Prevalens)) = (0.95 * (50/325000)) / ((0.95 * (50/325000)) + (1 – 0.90) * (1 – (50/325000))) ~= 0.00146 = 0.146% ~= 0.15%. Denne er 100 ganger større enn 0.0015%.

Oppgave 7
1. Forklar hva vi mener med en binomisk sannsynlighetsfordeling. Hvilke betingelser må være oppfylt for at variabel skal være binomisk fordelt?
ref
En suksessfordeling av binære utfall ved n forsøk.

  • Begivenhetene må være uavhengige
  • Begivenhetene må være binære (to utfall)
  • Sannsynlighetene for utfallene må være statiske

2. Diskuter hva vi mener med en statistisk nullhypotese og alternativhypotesen.
Ved hypotesetesting forsøker vi å bevise en alternativhypotese ved å falsifisere en (nøytral) nullhypotese. Nullhypotesen er en beskrivelse av en antatt virkelighet. Alternativhypotesen er en beskrivelse vi prøver å bevise er en bedre antagelse.

3. Sett opp en nullhypotese og en alternativhypotese for sannsynligheten p i en binomisk situasjon.
ref

4. Diskuter hva vi mener med en p-verdi. Hvordan regner vi ut en p-verdi i en binomisk situasjon?
ref

En (europeisk) rulett har 37 felter, som er nummerert 0 og 1 til 36. Feltet 0 har fargen grønn, 18 er røde og 18 er sorte. Croupieren (spillelederen) spinner hjulet og ruller en liten ball langs hjulet i motsatt retning. Hjulet er balansert slik at det er like sannsynlig å lande på alle feltene. Spillerne kan spille på alle kombinasjoner av tall og farger.

5. Hva er sannsynligheten for at kulen skal falle på rødt?
18/37

6. En spiller bestemmer seg for å spille 6 ganger. Han teller opp antall ganger kulen faller på rødt felt og kaller dette antallet for X. Hva slags sannsynlighetsfordeling har da X?
Binomisk fordeling

7. Spilleren observerer at det kommer rødt 6 ganger etter hverandre. Han betviler at spillet er rettferdig, og vil bruke sin statistiske kunnskap til å utføre en statistisk test før han bestemmer seg for å «avsløre» om spillet er urettferdig. Hva er den statistiske nullhypotesen og hva er alternativhypotesen han setter opp?
H0: P(R) = 18/37
H1: P(R) != 18/37 (i denne sammenheng P(R) > 18/37)

8. Spilleren baserer selve testen på antall ganger han får rødt, altså X, og velger å forkaste nullhypotesen når X er stor. Hva er p-verdien for testen han utfører?
P(6R) = (6 av 6) * (18/37)^6 * (19/37)^0 = (6!/6!) * (18/37)^6 ~= 0.013 = 1.3%. P-verdien er 1.3%. Dette er under det typiske signifikansnivået på 5% som vil si at vi kan forkaste H0.

9. Hvis spilleren hadde observert 5 røde, og ikke 6 som over, hva hadde p-verdien vært da?
P(5R) = (5 av 6) * (18/37)^5 * (19/37) = (6!/(5!)) * … ~= 0.084 = 8.4%. Dette er over det typiske signifikansnivået på 5% som vil si at vi ikke kan forkaste H0.

10. Basert på resultatet med 6 kuler på rad på rødt, vil du gå til ledelsen for kasinoet og fortelle dem at spillet deres er urettferdig?
Det kan jo godt være en tilfeldighet, men om det skjedde konsekvent ville jeg sagt ifra. Utvalget vårt (antall observasjoner) er for “øyeblikket” for lite til å konkludere med sikkerhet.

Oppgave 8
Vi vet at forhøyet kolesterol er en risikofaktor for hjertesykdom. Det kan derfor være viktig å holde kolesterolnivået lavt, og forhindre moderat eller uttalt forhøyet nivå. Vi sier i denne sammenhengen at forhøyet kolesterol er verdier over 250 mg/dL (=6.5 mmol/l). Vi ønsker å kontrollere kolesterolnivået hos barn. Fra tidligere vet vi fra store studier av 
kolesterol (i blod) hos barn i alderen 2-14 år at gjennomsnittet er 175 mg/dL og standardavviket er 30 mg/dL.

1. Anta nå at målt kolesterol kan betraktes som normalfordelt. Hva er da sannsynligheten for at et barn skal ha kolesterolnivå over 250 mg/dL?
μ = 175 mg/dL
σ = 30 mg/dL
Vi standardiserer fordelingen ved Y = (X – μ)/σ.
P(Y > 250) = 1- P(Y < 250) = 1 – P((X – 175)/30 < ((250 – 175)/30) = 1 – P((X – 175)/30 < 2.5) = 1 – 0.9938 = 0.0062 = 0.62%
*Har stått feil her tidligere (-2.5), men riktig svar

2. Hvis vi undersøker 50.000 barn hvert år, hvor mange vil vi oppdage med forhøyet kolesterolverdi?
E(X) = 50000 * 0.0062 = 310

3. Hvor høyt kolesterolnivå har du hvis du er blant de 10% med høyest kolesterol?
P(Y < z) = 0.9
Sannsynligheten for å finne en verdi med standardavvik mindre enn en tenkt standardisert verdi x er 90%, dvs. den tenkte verdien er blant de høyeste 10%.

Ser i tabellen og finner at x = 1.28. Det nærmeste vi kommer 0.9000 er 0.8997. Gjør om fra standardisert format ved Y = (X – μ)/σ. 1.28 = (X – 175)/30 –> X = 213.4. Det vil si at en må ha kolesterolnivå på minst ~213.4 mg/dL for å kvalifiseres innen topp 10%.

Vi antar at det er sammenheng mellom forhøyet kolesterol hos foreldre og hos barn. I et utvalg av menn som har hatt hjerteinfarkt og som har forhøyede kolesterolverdier (altså verdier ≥ 250 mg/dL), måles kolesterolverdiene til deres barn i alderen 2-14. Gjennomsnittlig kolesterol for disse er 207 mg/dL, fortsatt med et standardavvik på 30 mg/dL.

4. Hva er sannsynligheten for at et barn, med en far som har hatt hjerteinfarkt, skal ha et kolesterolnivå mellom 207 mg/dL og 250 mg/dL?
P(Y>207) og P(Y<250)
Y = (X – μ)/σ.
P((X – 207)/30 > (207 – 207)/30)  = 1 – P((X – 207)/30 < 0) = 0.5000
P((X – 207)/30 < (250-207)/30) = P((X – 207)/30 < 1.43) = 0.9236
0.9236 – 0.5000 = 0.4236

5. Hva er sannsynligheten for at et barn med en far som har hatt hjerteinfarkt skal ha forhøyet kolesterolverdi?
P(Y>250) = 1 – P(Y<250) = 1 – P((X-207)/30) < (250-207)/30) = 1 – 0.9236 = 0.0764 = 7.64%

6. Hvis man undersøker 1.000 barn med fedre som har hatt infarkt, hvor mange vil man da oppdage? Kommenter dette resultatet opp mot det du fant i 2.
1000 * 0.0764 = 76.4
50000 * 0.0764 = 3820
I #2 var det 310.
3820 / 310 ~= 12.3 ganger flere.
(Evt. 0.0764 / 0.0062 ~= 12.3)

7. Vil du anbefale tester av kolesterol blant barn (og av utvalgte risikogrupper) for å avsløre forhøyet kolesterol?
Ja.

Vi ser på ut utvalg på 10 barn som har fedre som har hatt hjerteinfarkt og som har forhøyede kolesterolverdier. Sannsynligheten for at et tilfeldig valgt barn har forhøyet kolesterolverdier er den du fant i 5.

8. Kan dette antas å være et binomisk forsøk? Hvilke kriterier må være til stede?
En suksessfordeling av binære utfall ved n forsøk.

  • Begivenhetene må være uavhengige
  • Begivenhetene må være binære (to utfall)
  • Sannsynlighetene for utfallene må være statiske

Ja.

9. Hva er sannsynligheten for at mindre enn 2 av disse har forhøyet kolesterolverdier? Er det greit å bruke tilnærmingen til normalfordelingen her?
Nei, da utvalget ikke er stort nok.

Mindre enn 2 = 1 og 0
P(<2) = (1 av 10) * 0.0764^1 * (1-0.0764)^9 + (0 av 10) * 0.0764^0 * (1-0.0764)^10
P(<2) = 0.3736 + 0.4517 = 0.8253 ~= 0.83 = 83%


ForeleserSimon Lergenmuller

Ressurser
Oppgaver

Hypotesetesting

Hypotesetesting er en metode i statistikk vi bruker for å kvantifisere usikkerhet og variasjon. Hva skjer om vi f.eks. tester et legemiddel på alt for små utvalg? Hva om det testes bare på menn? Utvalgene i legemiddeltester har inntil nylig bestått av 90% menn. Hvordan kan vi vite om observasjonene våre skyldes tilfeldigheter eller ikke? Dette kan vi finne svar på gjennom hypotesetesting.

Vi setter opp en nøytral nullhypotese (H0) og en alternativ hypotese (H1). Vi ønsker å vise at H1 er sann ved å undergrave H0. Formålet er å undersøke om datamaterialet gir tilstrekkelig grunnlag for å forkaste H0 til fordel for H1 med høy grad av sikkerhet. Vi regner ut en “p-verdi“, eller “signifikanssannsynlighet” med en antagelse om at H0 er sann og sammenligner med et “signifikansnivå” som bestemmes i forkant av forsøket. Dersom p-verdien er lavere enn signifikansnivået, sier vi at det er grunnlag for å forkaste H0. Det er vanlig at signifikansnivået er satt til 5%. Jo lavere signifikansnivå, jo sikrere vil konklusjonen være. Ved 5% signifikansnivå aksepterer vi at det er en risiko på 5% for å feilaktig forkaste H0. Dette kaller vi en feil av type I. Det motsatte, at vi ikke forkaster H0 selv om den er feil, kaller vi en feil av type II. Denne typen feil skyldes ofte at datamaterialet er for lite.

Hva er “p-verdi” og “signifikansnivå“?
Både p-verdi og signifikansnivå er verdier mellom 0 og 1.

La oss si at vi mistenker at en mynt havner på kron alt for ofte. Da er nullhypotesen P(K) = 0.5 og alternativhypotesen P(K) > 0.5. Av antall forsøk n vil det være a antall mynter som lander på kron. Dersom a er tilstrekkelig større enn 1/2 av n, kan vi forkaste H0. Med tilstrekkelig mye større menes da at a er større enn en verdi c. Verdien c velger vi utifra hvor sannsynlig vi vil at konklusjonen skal være. Vi vil at sannsyligheten for at vi forkaster H0 feilaktig skal være minst mulig. Denne sannsynligheten kaller vi “signifikansnivået”, ofte satt til 0.05 (5% sannsynlighet for at assosiasjonene vi har observert er tilfeldige). P-verdien er sannsynligheten for et testresultat dersom betingelsene i H0 er sanne.

La oss si at vi i et forsøk har fått at 70 av 100 mynter lander på kron. Vi går ut ifra at H0 er sann og ser på hvor sannsynlig det er å få dette resultatet (70/100 kron) eller noe mer ekstremt dersom P(K) = 0.5, altså P(X >= 70 | H0). Dette kunne vi regnet ut for hånd ved hjelp av den binomiske sannsynlighetsfordelingen, men det hadde vært tungvint. Det viser seg imidlertid at den binomiske fordelingen nærmer seg en normalfordeling når n, antall forsøk, er stort (ved sentralgrenseteoremet). Vi kan derfor forenkle utregningen via. en såkalt “normaltilnærmelse”

Når vi skal finne normalfordelingen som er mest lik histogrammet vårt, tar vi utgangspunkt i forventningen (μ) og standardavviket (σ) til den binomiske fordelingen. For en binomisk fordeling gjelder:

  • Forventning, E(X) = n * p
  • Varians, var(X) = n * p * (1 – p)

Derfor har vi at normalfordelingen har:

  • Forventning, E(X), μ = n * p
  • Standardavvik, SD(X), σ = sqrt(n * p * (1 – p))
    Siden Var(X) = SD(X)^2

Utregning
P(K) = 0.5
N = 100
μ = 100 * 0.5 = 50
σ = sqrt(50 * (0.5)) = sqrt(25) = 5
Normaltilnærmelsen er best når μ >= 5 og Var(X) >= 5.

Det neste steget er å standardisere normaltilnærmelsen vår, Y ~ N(0, 1). Vi trekker μ fra X slik at standardfordelingen får sentrum i 0, og deler på σ for å få et standardavvik = 1. Y = (X – μ) / σ.

Vi er interessert i P(X >= 70) = 1 – P(X <= 70). P(X <= 70) = P((X – 50)/5 <= (70 – 50)/5) = P(Y <= 4). På engelsk, kaller vi 4 for z-skåren (z-score). Den sier noe om hvor mange standardavvik verdien vår ligger unna gjennomsnittet (0). Gjennomsnittet av utfallene i et forsøk med en stokastisk variabel vil nærme seg forventningen dersom forsøket gjentas tilstrekkelig mange ganger. På normalfordelingstabellen ser vi at en z-skår på 4 gir oss en sannsynlighet på 0.99997. Det vil si at sannsynligheten for at en tilfeldig valgt verdi ligger et mindre antall standardavvik fra gjennomsnittet enn 4 er 99.997%. Videre regner vi ut at 1 – 0.99997 = 0.00003 = 0.003%. Verdien vi har funnet nå er p-verdien, altså sannsynligheten for at vi får at 70 / 100 mynter lander på kron dersom H0 er sann, P(K) = 0.50. Med et signifikansnivå på 5%, kan vi forkaste H0 med relativt god sikkerhet og konkludere med at H1 er sann, altså at mistanken vår om at mynten landet på kron alt for ofte var vel begrunnet.

Estimering
Et utvalg på 1000 pasienter forteller oss ikke nødvendigvis virkeligheten for hele populasjonen. Når det ikke er praktisk mulig å samle data for en hel populasjon må vi estimere (tilnærme) den “sanne sannsynligheten” Estimatsannsynligheten noteres som en p med en “hatt” (^) over, altså p^ dersom “^” var direkte over p’en. Vi ser på p^ som sannsynligheten i et utvalg av en større gruppe og den “sanne sannsynligheten” som en tenkt verdi for hele gruppen. Vi tenker for oss at vi har en stokastisk variabel som er binomisk fordelt, men der sannsynligheten p er ukjent.

Rett fra boka til Aalen et al.:
“Generelt er det liten grunn til å tro at p^ faller eksakt sammen med p, og et viktig spørsmål er hvor mye de med rimelighet kan avvike fra hverandre. Denne usikkerheten kan beskrives ved et såkalt konfidensintervall. Med dette mener vi et område rundt p^ som med stor sannsynlighet dekker den sanne verdien p.” 

Vi har formlene:

  • E(p^) = p
  • SD(p^) = sqrt((p * (1 – p) / n))
    Dette leses som standardfeilen til estimatet p^.
    Om vi vil estimere standardfeilen, erstatter vi bare p i formelen med p^. Da får vi Sp = sqrt((p^ * (1 – p^) / n)).

Konfidensintervallet er bestemt ved p^ +- x * Sp hvor x er en verdi fra normalfordelingstabellen. Jo større x, jo bredere konfidensintervall, og jo større sannsynlighet er det for at den sanne verdien p er inkludert. For eksempel vil et intervall på p^ +- 1.96 * Sp dekke 95% av fordelingen. Intervallet har altså en 95% sannsynlighet for å inneholde p.

Alle formlene er gitt at n er tilstrekkelig stor, evt. går mot ∞.


Foreleser: Magne Thoresen

Ressurser
Presentasjon